Difference between revisions of "Conservation Laws and Boundary Conditions"
Line 44: | Line 44: | ||
<center><math> \vec k : \mbox{unit vector pointing in the positive z-direction}</math></center> <br> | <center><math> \vec k : \mbox{unit vector pointing in the positive z-direction}</math></center> <br> | ||
<center><math> \rho : \mbox{water density} \, </math></center> | <center><math> \rho : \mbox{water density} \, </math></center> | ||
+ | |||
+ | <math>\bullet</math> Vector Identity: | ||
+ | |||
+ | <center><math> (\vec V \cdot \nabla) \vec V = \frac 1{2} \nabla (\vec V \cdot \vec V) - \vec V \times ( \nabla \times \vec V) </math></center> | ||
+ | |||
+ | in irrotational flow: <math> \nabla \times \vec V = 0 </math>, thus Euler's equations become: | ||
+ | |||
+ | <center><math> \frac{\partial \vec V}{\partial t} + \frac 1{2} \nabla (\vec V \cdot \vec V) = - \frac 1{\rho} \nabla P - \nabla (g Z) </math></center> <br> | ||
+ | <center><math> \mbox{Note} : \quad \nabla Z = \vec K, \vec V = \nabla \Phi </math></center> | ||
+ | |||
+ | Upon substitution: | ||
+ | |||
+ | <center><math> \nabla \underbrace{(\frac{\partial \Phi}{\partial t} + \frac 1{2} \nabla \Phi \cdot \nabla \Phi + \frac {P}{e} + g Z )} = 0 </math></center> <br> | ||
+ | <center><math> F ( \vec X, t) </math></center> | ||
+ | |||
+ | <center><math> \nabla F( \vec X, t) =0 \quad \Longrightarrow \quad F (\vec X, t) = \mathbb{C} </math></center> | ||
+ | |||
+ | where <math> mathbb{C} = \mbox{constant} </math> | ||
+ | |||
+ | Bernovlli's equation follows: | ||
+ | |||
+ | <center><math> \frac{\partial \Phi}{\partial t} + \frac 1{2} \nabla \Phi \cdot \nabla \Phi + \frac {P}{\rho} + g Z = \mathbb{C} </math></center> <br> | ||
+ | or <br> |
Revision as of 09:46, 17 January 2007
The Ocean Environment
Non Linear Free-surface Condition
[math]\displaystyle{ \begin{matrix} &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]
[math]\displaystyle{ \bullet }[/math] Assume ideal fluid (No shear stresses) and irrotational flow:
Let:
Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.
[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
[math]\displaystyle{ \bullet }[/math] Conservation of mass:
or
[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.
[math]\displaystyle{ \bullet }[/math] Vector Identity:
in irrotational flow: [math]\displaystyle{ \nabla \times \vec V = 0 }[/math], thus Euler's equations become:
Upon substitution:
where [math]\displaystyle{ mathbb{C} = \mbox{constant} }[/math]
Bernovlli's equation follows:
or