Difference between revisions of "Linear and Second-Order Wave Theory"

From WikiWaves
Jump to navigationJump to search
Line 19: Line 19:
 
Kinematic condition
 
Kinematic condition
  
<center><math> \left ( \frac{\partial \epsilon}{\partial t} + \nabla \Phi \cdot \nabla \epsilon \right )_{Z=\epsilon} = \left ( \frac{\partial \Phi}{\partial Z} \right )_{Z=\epsilon} </math></center>
+
<center><math> \left ( \frac{\partial \zeta}{\partial t} + \nabla \Phi \cdot \nabla \zeta \right )_{Z=\zeta} = \left ( \frac{\partial \Phi}{\partial Z} \right )_{Z=\zeta} </math></center>
 +
 
 +
<center><math> \left( \frac{\partial\zeta}{\partial t} + \nabla \Phi \cdots \nabla \zeta \right)_{Z=0} + \zeta \frac{\partial}{\partial Z} \left( \frac{\partial\zeta}{\partial t} + \nabla \Phi \cdots \nabla \zeta \right)_{Z=0} + \cdots </math></center><br>
 +
<center><math> = \left( \frac{\partial\Phi}{\partial Z}_{Z=0} + \zeta \left( \frac{\partial^2 \Phi}{\partial Z^2} \right)_{Z=0} + \cdots </math></center>

Revision as of 09:23, 20 January 2007

Linerization of Free-surface Conditions

On earth the gravitational acceleration is large enough that the restoring role it plays leads to small wave slopes in most, but not all, cases.
So it is often a very good assumption to set

[math]\displaystyle{ | \nabla \zeta | = O (\epsilon) }[/math]

Let:

[math]\displaystyle{ \epsilon = \epsilon_1 + \epsilon_2 + \epsilon_3 + \cdots }[/math]
[math]\displaystyle{ \Phi = \Phi_1 + \Phi_2 + \Phi_3 + \cdots }[/math]

And derive boundary value problems for [math]\displaystyle{ \epsilon_i,\Phi_i }[/math]. Rarely we need to go beyond [math]\displaystyle{ i = 3 }[/math].

Here we will derive the free-surface conditions up to second order.



Kinematic condition

[math]\displaystyle{ \left ( \frac{\partial \zeta}{\partial t} + \nabla \Phi \cdot \nabla \zeta \right )_{Z=\zeta} = \left ( \frac{\partial \Phi}{\partial Z} \right )_{Z=\zeta} }[/math]
[math]\displaystyle{ \left( \frac{\partial\zeta}{\partial t} + \nabla \Phi \cdots \nabla \zeta \right)_{Z=0} + \zeta \frac{\partial}{\partial Z} \left( \frac{\partial\zeta}{\partial t} + \nabla \Phi \cdots \nabla \zeta \right)_{Z=0} + \cdots }[/math]


[math]\displaystyle{ = \left( \frac{\partial\Phi}{\partial Z}_{Z=0} + \zeta \left( \frac{\partial^2 \Phi}{\partial Z^2} \right)_{Z=0} + \cdots }[/math]