Difference between revisions of "Wave Energy Density and Flux"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
 
<u>Energy Density, Energy Flux and Momentum Flux of Surface Waves</u>
 
<u>Energy Density, Energy Flux and Momentum Flux of Surface Waves</u>
  
<math> \bar{\varepsilon} (t) = \ \mbox{Energy in control volume} \ \gamma(t) </math> :
+
<math> \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) </math> :
  
 
<center><math> \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV </math></center>
 
<center><math> \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV </math></center>
Line 7: Line 7:
 
Mean energy over unit horizongtal surface area <math> S \, </math> :
 
Mean energy over unit horizongtal surface area <math> S \, </math> :
  
<center><math> \bar{\varepsilon} = \bar{\frac{\varepsilon{t}}{S}} = \rho </math></center>
+
<center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho </math></center>

Revision as of 08:53, 26 January 2007

Energy Density, Energy Flux and Momentum Flux of Surface Waves

[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :

[math]\displaystyle{ \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV }[/math]

Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :

[math]\displaystyle{ \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho }[/math]