Difference between revisions of "Wave Energy Density and Flux"
From WikiWaves
Jump to navigationJump to searchLine 1: | Line 1: | ||
<u>Energy Density, Energy Flux and Momentum Flux of Surface Waves</u> | <u>Energy Density, Energy Flux and Momentum Flux of Surface Waves</u> | ||
− | <math> | + | <math> \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) </math> : |
<center><math> \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV </math></center> | <center><math> \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV </math></center> | ||
Line 7: | Line 7: | ||
Mean energy over unit horizongtal surface area <math> S \, </math> : | Mean energy over unit horizongtal surface area <math> S \, </math> : | ||
− | <center><math> \ | + | <center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho </math></center> |
Revision as of 08:53, 26 January 2007
Energy Density, Energy Flux and Momentum Flux of Surface Waves
[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :
Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :