Difference between revisions of "Wave Momentum Flux"
Line 9: | Line 9: | ||
We may recast the rate of change of the momentum (<math> \equiv \, </math> momentum flux) in the form | We may recast the rate of change of the momentum (<math> \equiv \, </math> momentum flux) in the form | ||
+ | |||
+ | <center><math> \frac{d\overline{M(t)}}{dt} = - \rho \iiint_V(t) [ \nabla ( \frac{P}{\rho} + g Z ) + ( \bar{V} \cdot \nabla ) \bar{V} ] dV + \rho \oint_{s(t)} \bar{V} U_n dS </math></center> | ||
+ | |||
+ | So far <math> V(t)\, </math> is and arbitrary closed time dependent volume bounded by the time dependent surface <math> S(t)\, </math>. Here we need to invoke an important and complex vector theorem. | ||
+ | |||
+ | Recall from the proof of Bernoulli's equation that: | ||
+ | |||
+ | <center><math> (\bar{V} \cdot \nabla ) \bar{V} = \nabla ( \frac{1}{2} \bar{V} \cdot {V} ) - \bar{V} \times (\nabla \times \bar{V} ) </math></center> | ||
+ | |||
+ | By virtue of Gauss's vector theorem: | ||
+ | |||
+ | <center><math> \iiint_{V(t)} \nabla ( \frac{1}{2} \bar{V} \cdot \bar{V} ) dV = \frac{1}{2} \oint_{S(t)} \bar{V} \cdot \bar{V} \bar{n} dS </math></center> | ||
+ | |||
+ | where in potential flow: <math> \bar{V} = \nabla \Phi \,</math>. | ||
+ | |||
+ | In potential flow it can be shown that: | ||
+ | |||
+ | <center><math> \oint_{S(t)} \frac{1}{2} ( \bar{V} \cdot \bar{V} ) \bar{n} dS = \oint_{S(t)} \frac{\partial\Phi}{\partial n} \nabla \Phi dS = \oint_{S(t)} V_n \bar{V} dS </math></center> | ||
+ | |||
+ | Proof left as an exercise! Just prove that for <math> \nabla^2 \Phi = 0 \, </math>; | ||
+ | |||
+ | <center><math> \oint_S \frac{1}{2} ( \nabla\Phi \cdot \nabla\Phi) \bar{n} dS \equiv \oint_S \frac{\partial\Phi}{\partial n} \nabla\Phi dS. </math></center> |
Revision as of 22:54, 16 February 2007
Momentum flux in potential flow
by virtue of the transport theorem
Invoking Euler's equations in inviscid flow
We may recast the rate of change of the momentum ([math]\displaystyle{ \equiv \, }[/math] momentum flux) in the form
So far [math]\displaystyle{ V(t)\, }[/math] is and arbitrary closed time dependent volume bounded by the time dependent surface [math]\displaystyle{ S(t)\, }[/math]. Here we need to invoke an important and complex vector theorem.
Recall from the proof of Bernoulli's equation that:
By virtue of Gauss's vector theorem:
where in potential flow: [math]\displaystyle{ \bar{V} = \nabla \Phi \, }[/math].
In potential flow it can be shown that:
Proof left as an exercise! Just prove that for [math]\displaystyle{ \nabla^2 \Phi = 0 \, }[/math];