Difference between revisions of "Wave Scattering By A Vertical Circular Cylinder"
Line 3: | Line 3: | ||
This important flow accepts a closed-form analytical solution for arbitrary values of the wavelength <math>\lambda\,</math>. This was shown to be the case by Mccamy-Fuchs using separation of variables | This important flow accepts a closed-form analytical solution for arbitrary values of the wavelength <math>\lambda\,</math>. This was shown to be the case by Mccamy-Fuchs using separation of variables | ||
− | <center><math> \Phi_I = \ | + | <center><math> \Phi_I = \mathbf{Re} \left\{\phi_I e^{i\omega t} \right \} \,</math></center> |
<center><math> \phi_I = \frac{i g A}{\omega} \frac{\cosh K(Z+H)}{\cosh K H} e^{-iKX} </math></center> | <center><math> \phi_I = \frac{i g A}{\omega} \frac{\cosh K(Z+H)}{\cosh K H} e^{-iKX} </math></center> | ||
Line 38: | Line 38: | ||
Here we make use of the familiar identity: | Here we make use of the familiar identity: | ||
− | <center><math> e^{-iKR\cos\theta} = \sum_{m=0}^{infty} \epsilon_m J_m ( K R | + | <center><math> e^{-iKR\cos\theta} = \sum_{m=0}^{infty} \epsilon_m J_m ( K R ) \cos m \theta </math></center> |
<center><math> \epsilon_m = \begin{Bmatrix} | <center><math> \epsilon_m = \begin{Bmatrix} | ||
Line 56: | Line 56: | ||
<center><math> \begin{Bmatrix} | <center><math> \begin{Bmatrix} | ||
− | J_m ( K R | + | J_m ( K R ) \\ |
Y_m ( K R ) | Y_m ( K R ) | ||
\end{Bmatrix} </math></center> | \end{Bmatrix} </math></center> | ||
Line 64: | Line 64: | ||
As <math> R \to \infty\,</math>: | As <math> R \to \infty\,</math>: | ||
− | <center><math> \psi(R,\theta) \ | + | <center><math> \psi(R,\theta) \sim e^{-iKR + i\omega t} \,</math></center> |
Also as <math> R \to \infty\, </math>: | Also as <math> R \to \infty\, </math>: | ||
Line 74: | Line 74: | ||
Hence the Hankel function: | Hence the Hankel function: | ||
− | <center><math> H_m^{(2)} ( K R | + | <center><math> H_m^{(2)} ( K R ) = J_m ( K R ) - i Y_m ( K R ) \,</math></center> |
<center><math> \sim \left( \frac{2}{\pi K R} \right)^{1/2} e^{-i \left( K R - \frac{1}{2} m \pi - \frac{\pi}{4} \right)} </math></center> | <center><math> \sim \left( \frac{2}{\pi K R} \right)^{1/2} e^{-i \left( K R - \frac{1}{2} m \pi - \frac{\pi}{4} \right)} </math></center> | ||
Line 84: | Line 84: | ||
With the constants <math> A_m \,</math> to be determined. The cylinder condition requires: | With the constants <math> A_m \,</math> to be determined. The cylinder condition requires: | ||
− | <center><math> \left. \frac{\partial\psi}{\partial R} \right|_{R=a} = - \frac{ | + | <center><math> \left. \frac{\partial\psi}{\partial R} \right|_{R=a} = - \frac{\partial}{\partial R} \sum_{m=0}^{\infty} \epsilon_m J_m ( K R ) \left.\cos m \theta \right|_{r=a} </math></center> |
It follows that: | It follows that: | ||
Line 114: | Line 114: | ||
The Surge exciting force is given by | The Surge exciting force is given by | ||
− | <center><math> X_1 = \iint_{S_B} P n_1 dS = \mathbf{Re \left\{ \mathbf{X}_1 e^{i\omega t} \right\} </math></center> | + | <center><math> X_1 = \iint_{S_B} P n_1 dS = \mathbf{Re} \left\{ \mathbf{X}_1 e^{i\omega t} \right\} </math></center> |
<center><math> \mathbf{X}_1 = \rho \int_{-\infty}^0 dZ \int_0^{2\pi} a d\theta \left( - i \omega \frac{i g A}{\omega} \right) e^{K Z} n_1 (\psi + x)_{R=a} </math></center> | <center><math> \mathbf{X}_1 = \rho \int_{-\infty}^0 dZ \int_0^{2\pi} a d\theta \left( - i \omega \frac{i g A}{\omega} \right) e^{K Z} n_1 (\psi + x)_{R=a} </math></center> | ||
Simple algebra in this case of water of infinite depth leads to the expression. | Simple algebra in this case of water of infinite depth leads to the expression. |
Revision as of 08:51, 6 March 2007
- Mccamy-Fuchs analytical solution of the scattering of regular waves by a vertical circular cylinder.
This important flow accepts a closed-form analytical solution for arbitrary values of the wavelength [math]\displaystyle{ \lambda\, }[/math]. This was shown to be the case by Mccamy-Fuchs using separation of variables
Let the diffraction potential be:
- For [math]\displaystyle{ \phi_7\, }[/math] to satisfy the 3D Laplace equation, it is easy to show that [math]\displaystyle{ \psi\, }[/math] must satisfy the Helmholtz equation:
In polar coordinates:
The Helmholtz equation takes the form:
On the cylinder:
or
Here we make use of the familiar identity:
Try:
Upon substitution in Helmholtz's equation we obtain:
This is the Bessel equation of order m accepting as solutions linear combinations of the Bessel functions
The proper linear combination in the present problem is suggested by the radiation condition that [math]\displaystyle{ \psi\, }[/math] must satisfy:
As [math]\displaystyle{ R \to \infty\, }[/math]:
Also as [math]\displaystyle{ R \to \infty\, }[/math]:
Hence the Hankel function:
Satisfies the far field condition required by [math]\displaystyle{ \psi(R,\theta) \, }[/math]. So we set:
With the constants [math]\displaystyle{ A_m \, }[/math] to be determined. The cylinder condition requires:
It follows that:
or:
where [math]\displaystyle{ (')\, }[/math] denotes derivatives with respect to the argument. The solution for the total velocity potential follows in the form
And the total original potential follows:
In the limit as [math]\displaystyle{ H \to \infty \quad \frac{\cosh K (Z+H)}{K H} \longrightarrow e^{K Z} \, }[/math] and the series expansion solution survives.
Surge exciting force
The total complex potential, incident and scattered was derived above. The hydrodynamic pressure follows from Bernoulli:
The Surge exciting force is given by
Simple algebra in this case of water of infinite depth leads to the expression.