Difference between revisions of "Graf's Addition Theorem"
Line 11: | Line 11: | ||
where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions] | where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions] | ||
<math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>. | <math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>. | ||
− | which is valid provided that <math>r_l < R_{jl}</math>. | + | which is valid provided that <math>r_l < R_{jl}</math> (this restriction is not necessary if <math>C=J</math> and <math>\nu</math> is an integer. |
Here, <math>(R_{jl},\varphi_{jl})</math> are the polar coordinates of the mean centre position of <math>\Delta_{l}</math> in the local coordinates of <math>\Delta_{j}</math>. | Here, <math>(R_{jl},\varphi_{jl})</math> are the polar coordinates of the mean centre position of <math>\Delta_{l}</math> in the local coordinates of <math>\Delta_{j}</math>. | ||
Revision as of 10:50, 28 March 2007
Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found Abramowitz and Stegun 1964 online. We express the theorem in the following form
where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ J_\nu }[/math], [math]\displaystyle{ I_\nu }[/math], [math]\displaystyle{ Y_\nu }[/math], [math]\displaystyle{ K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math]. which is valid provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math] (this restriction is not necessary if [math]\displaystyle{ C=J }[/math] and [math]\displaystyle{ \nu }[/math] is an integer. Here, [math]\displaystyle{ (R_{jl},\varphi_{jl}) }[/math] are the polar coordinates of the mean centre position of [math]\displaystyle{ \Delta_{l} }[/math] in the local coordinates of [math]\displaystyle{ \Delta_{j} }[/math].
Explicit versions of the theorem are given below,
This theorem form the basis for Kagemoto and Yue Interaction Theory.