Difference between revisions of "Graf's Addition Theorem"
Tim.williams (talk | contribs) m (just wanted to make explanation a bit clearer) |
|||
Line 11: | Line 11: | ||
where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions] | where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions] | ||
<math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>, | <math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>, | ||
− | <math>(r_j,\theta_j)</math> and <math>(r_l,\theta_l)</math> are polar coordinates centred at two different positions\ and | + | <math>(r_j,\theta_j)</math> and <math>(r_l,\theta_l)</math> are polar coordinates centred at two different positions |
− | <math>(R_{jl},\ | + | with global coordinates <math>\boldsymbol{O}_j </math>, <math> \boldsymbol{O}_l </math>, and |
− | <math> | + | <math>(R_{jl},\vartheta_{jl})</math> are the polar coordinates of <math> \boldsymbol{O}_l </math> with respect to <math> \boldsymbol{O}_j </math>. |
This expression is valid only provided that <math>r_l < R_{jl}</math> ( | This expression is valid only provided that <math>r_l < R_{jl}</math> ( | ||
− | + | although this restriction is unnecessary if <math>C=J</math> and <math>\nu</math> is an integer). | |
Revision as of 10:45, 5 June 2007
Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found Abramowitz and Stegun 1964 online. We express the theorem in the following form
where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ J_\nu }[/math], [math]\displaystyle{ I_\nu }[/math], [math]\displaystyle{ Y_\nu }[/math], [math]\displaystyle{ K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math], [math]\displaystyle{ (r_j,\theta_j) }[/math] and [math]\displaystyle{ (r_l,\theta_l) }[/math] are polar coordinates centred at two different positions with global coordinates [math]\displaystyle{ \boldsymbol{O}_j }[/math], [math]\displaystyle{ \boldsymbol{O}_l }[/math], and [math]\displaystyle{ (R_{jl},\vartheta_{jl}) }[/math] are the polar coordinates of [math]\displaystyle{ \boldsymbol{O}_l }[/math] with respect to [math]\displaystyle{ \boldsymbol{O}_j }[/math]. This expression is valid only provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math] ( although this restriction is unnecessary if [math]\displaystyle{ C=J }[/math] and [math]\displaystyle{ \nu }[/math] is an integer).
Explicit versions of the theorem are given below,
This theorem form the basis for Kagemoto and Yue Interaction Theory.