Difference between revisions of "Wave Forces on a Body"

From WikiWaves
Jump to navigationJump to search
Line 24: Line 24:
 
|  || steepness || parameter
 
|  || steepness || parameter
 
|}
 
|}
 +
 +
=== Type of Forces ===
 +
 +
1. '''Viscous forces''' Form drag, viscous drag <math> = f ( R_e, K_c, \, </math> roughness, <math> \ldots ) </math>.
 +
 +
* ''Form drag'' <math> ( C_D ) \, </math>
 +
 +
Associated primarily with flow separation -normal stresses.
 +
 +
* ''Friction drag'' <math> ( C_F ) \, </math>
 +
 +
Associated with skin friction <math> \tau_w, \ i.e., \ \vec{F} \sim \iint_{\mbox{body (wetted surface)}} \tau_w dS \, </math>.
 +
 +
2. '''Inertial forces''' Froude-Krylov forces, diffraction forces, radiation forces.
 +
 +
Forces arising from potential flow wave theory,
 +
 +
<center><math> \vec{F} = \iint_{body (wetted surface)} p \hat{n} dS, \ \, </math> where <math> \ p = - \rho \left( \frac{\partial\phi}{\partial t} + g y + \frac{1}{2} \left| \nabla \phi \right|^2 \right) </math></center>
 +
 +
For linear theory, the velocity potential <math> \phi \, </math> and the pressure <math> p \, </math> can be decomposed to
 +
 +
{| border="0" align="center"
 +
|- align="center"
 +
| <math> \phi = \, </math> || <math> \underbrace{\phi_I} \, </math> || <math> + \, </math> || <math> \underbrace{\phi_D} \, </math> || <math> + \, </math> || <math> \underbrace{\phi_R} \, </math>
 +
|- align="center"
 +
|  || Incident wave ||  || Diffracted wave ||  || Radiated wave
 +
|- align="center"
 +
|  || potential <math> (a) \, </math> ||  || potential <math> (b.1) \, </math> ||  || potential <math> (b.2) \, </math>
 +
|- align="center"
 +
| <math> - \frac{p}{\rho} = \, </math> || <math> \frac{\partial\phi_I}{\partial t} \, </math> || <math> + \, </math> || <math> \frac{\partial\phi_D}{\partial t} \, </math> || <math> + \, </math> || <math> \frac{\partial\phi_R}{\partial t} \, </math> || <math> + \,
 +
</math> || <math> g y \, </math>
 +
|}
 +
 +
(a) Incident wave potential

Revision as of 12:24, 17 July 2007

Wave Forces on a Body

[math]\displaystyle{ U = \omega A \, }[/math]


[math]\displaystyle{ R_e = \frac{U\ell}{\nu} = \frac{\omega A \ell}{\nu} \, }[/math]


[math]\displaystyle{ K_C = \frac{UT}{\ell} = \frac{A\omega T}{\ell} = 2 \pi \frac{A}{\ell} \, }[/math]


[math]\displaystyle{ D_F = \frac{F}{\rho g A \ell^2} = f \left( \frac{}{} \right. }[/math] [math]\displaystyle{ \underbrace{\frac{A}{\lambda}} \, }[/math], [math]\displaystyle{ \underbrace{\frac{\ell}{\lambda}} \, }[/math], [math]\displaystyle{ R_e \, }[/math], [math]\displaystyle{ \frac{h}{\lambda} \, }[/math], roughness, [math]\displaystyle{ \ldots \left. \frac{}{} \right) \, }[/math]
Wave Diffraction
steepness parameter

Type of Forces

1. Viscous forces Form drag, viscous drag [math]\displaystyle{ = f ( R_e, K_c, \, }[/math] roughness, [math]\displaystyle{ \ldots ) }[/math].

  • Form drag [math]\displaystyle{ ( C_D ) \, }[/math]

Associated primarily with flow separation -normal stresses.

  • Friction drag [math]\displaystyle{ ( C_F ) \, }[/math]

Associated with skin friction [math]\displaystyle{ \tau_w, \ i.e., \ \vec{F} \sim \iint_{\mbox{body (wetted surface)}} \tau_w dS \, }[/math].

2. Inertial forces Froude-Krylov forces, diffraction forces, radiation forces.

Forces arising from potential flow wave theory,

[math]\displaystyle{ \vec{F} = \iint_{body (wetted surface)} p \hat{n} dS, \ \, }[/math] where [math]\displaystyle{ \ p = - \rho \left( \frac{\partial\phi}{\partial t} + g y + \frac{1}{2} \left| \nabla \phi \right|^2 \right) }[/math]

For linear theory, the velocity potential [math]\displaystyle{ \phi \, }[/math] and the pressure [math]\displaystyle{ p \, }[/math] can be decomposed to

[math]\displaystyle{ \phi = \, }[/math] [math]\displaystyle{ \underbrace{\phi_I} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \underbrace{\phi_D} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \underbrace{\phi_R} \, }[/math]
Incident wave Diffracted wave Radiated wave
potential [math]\displaystyle{ (a) \, }[/math] potential [math]\displaystyle{ (b.1) \, }[/math] potential [math]\displaystyle{ (b.2) \, }[/math]
[math]\displaystyle{ - \frac{p}{\rho} = \, }[/math] [math]\displaystyle{ \frac{\partial\phi_I}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \frac{\partial\phi_D}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \frac{\partial\phi_R}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ g y \, }[/math]

(a) Incident wave potential