Difference between revisions of "Energy Balance for Two Elastic Plates"
Line 1: | Line 1: | ||
+ | \chapter{The Energy Balance Equation} (255) | ||
+ | Based on the method used in [[evans_davies68]], a check can be made to ensure the solutions of the floating plate problem are in energy balance. | ||
+ | This is simply a condition that the incident energy is equal to the sum of the radiated energy. | ||
+ | When the first and final plates have different properties, the energy balance equation is derived by applying Green's theorem to <math>\phi</math> and its conjugate [[evans_davies68]]. | ||
+ | We set up the problem as given in Figure 256 | ||
+ | \begin{figure}[H] | ||
+ | \begin{center} | ||
+ | \includegraphics[width=.8\textwidth]{Figures/EnergyBalanceTricks} | ||
+ | \end{center} | ||
+ | \caption[A diagram depicting the area <math>\mathcal{U}</math> which is bounded by the rectangle <math>\mathcal{S}</math>.] | ||
+ | {A diagram depicting the area <math>\mathcal{U}</math> which is bounded by the rectangle <math>\mathcal{S}</math>. | ||
+ | The rectangle <math>\mathcal{S}</math> is bounded by <math> -h\leq z \leq0</math> and <math>-\infty\leq x \leq \infty</math>.} | ||
+ | (256) | ||
+ | \end{figure} | ||
+ | |||
+ | Applying Green's theorem to <math>\phi</math> and its conjugate <math>\phi^*</math> gives | ||
+ | <center><math>(257) | ||
+ | { \int\int_\mathcal{U}(\phi\nabla^2\phi^* - \phi^*\nabla^2\phi)dxdz | ||
+ | = \int_\mathcal{S}(\phi\frac{\partial\phi^*}{\partial n} - \phi^*\frac{\partial\phi}{\partial n})dl }, | ||
+ | </math></center> | ||
+ | where <math>n</math> denotes the outward plane normal to the boundary and <math>l</math> denotes the plane parallel to the boundary. | ||
+ | As <math>\phi</math> and <math>\phi^*</math> satisfy \eqref{eqn:Laplace2}, the left hand side of \eqref{eqn:Green1} vanishes so that \eqref{eqn:Green1} reduces to | ||
+ | <center><math> | ||
+ | \Im\int_\mathcal{S}\phi\frac{\partial\phi^*}{\partial n} dl = 0, | ||
+ | </math></center> | ||
+ | Expanding gives | ||
+ | <center><math>(258) | ||
+ | \xi_1 +\xi_2 + \xi_3 = 0, | ||
+ | </math></center> | ||
+ | where | ||
+ | <center><math> | ||
+ | \xi_1 = | ||
+ | { \Im\int_{-\infty}^{\infty}(\phi\frac{\partial\phi^*}{\partial z})\big|_{z=0}dx }, | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | \xi_2 = | ||
+ | { \Im\int_{-h}^0(\phi\frac{\partial\phi^*}{\partial x})\big|_{x=\infty}dz }, | ||
+ | </math></center> | ||
+ | and | ||
+ | <center><math> | ||
+ | \xi_3 = | ||
+ | { - \Im\int_{-h}^0(\phi\frac{\partial\phi^*}{\partial x})\big|_{x=-\infty}dz } = 0 , | ||
+ | </math></center> | ||
+ | where <math>\Im</math> denotes the imaginary part. | ||
+ | \subsection*{Expanding <math>\mathbf{\xi_1}</math>} | ||
+ | Near <math>x=-\infty</math>, we approximate <math>\phi</math> by | ||
+ | <center><math>(259) | ||
+ | \begin{matrix}{l} | ||
+ | { | ||
+ | \phi \approx e^{-\kappa_{1}(0)(x-r_1)}\frac{\cos{(k_1(0)(z+h))}}{\cos{(k_1(0)h)}} + | ||
+ | R_1(0)e^{\kappa_{1}(0)(x-r_1)}\frac{\cos{(k_{1}(0)(z+h))}}{\cos{(k_{1}(0)h)}}}. | ||
+ | \end{matrix} | ||
+ | </math></center> | ||
+ | To simplify the derivation, we re-express \eqref{eqn:EnergyPhiLeft1} as | ||
+ | <center><math> | ||
+ | \phi \approx \left(e^{-i\kappa^I_1(x-r_1)}+ R_1(0)e^{i\kappa^I_1(x-r_1)}\right)\frac{\cosh{(k^I_1(z+h))}}{\cosh{(k^I_1h)}}, | ||
+ | </math></center> | ||
+ | where <math>k^I_1 = -\Im k_{1}(0)</math> and <math>\kappa^I_1=-\Im \kappa_1(0)</math>, so that | ||
+ | <center><math> | ||
+ | \frac{\partial\phi}{\partial x} \approx \left(-i\kappa^{I}_1e^{-i\kappa^{I}_1(x-r_1)} \\ | ||
+ | + i\kappa^{I}_1R_1(0)e^{i\kappa^{I}_1(x-r_1)}\right)\frac{\cosh{(k^I_1(z+h))}}{\cosh{(k^I_1h)}}. | ||
+ | </math></center> | ||
+ | Therefore, | ||
+ | <center><math> | ||
+ | \begin{matrix}{rl} | ||
+ | \xi_1=& {\Im\int_{-h}^0 \biggl[\left(e^{-i\kappa^{I}_1(x-r_1)}+ R_1(0)e^{i\kappa^{I}_1(x-r_1)}\right)\biggr. }\\ | ||
+ | & { \left(i\kappa^{I}_1e^{i\kappa^{I}_1(x-r_1)} - i\kappa^{I}_1R_1(0)^*e^{-i\kappa^{I}_1(x-r_1)}\right) }\\ | ||
+ | & { \left.\left(\frac{\cosh^2{(k^I_1(z+h))}}{\cosh^2{(k^I_1h)}}\right)\right]dz, }\\ \\ | ||
+ | =& { \Im\left[\frac{i\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}} | ||
+ | \int_{-h}^0 \left(\cosh{(2k^I_1(z+h))+1}\right)dz\right] ,}\\ \\ | ||
+ | =& { \Im\left[\frac{i\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}} | ||
+ | \left[\frac{1}{2k^I_1}\sinh{(2k^I_1(z+h))} + z\right]_{-h}^0\right], }\\ \\ | ||
+ | =& { \frac{\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}} \left(\frac{1}{2k^I_1}\sinh{(2k^I_1h))} + h\right) ,}\\ \\ | ||
+ | =& { \frac{\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2k^I_1}\left(\tanh{(k^I_1h)}+\frac{hk^I_1}{\cosh^2{(k^I_1h)}}\right) , } | ||
+ | \end{matrix} | ||
+ | </math></center> | ||
+ | where <math>R_1(0)^*</math> is the conjugate of <math>R_1(0)</math>. | ||
+ | \subsection*{Expanding <math>\mathbf{\xi_2}</math>} | ||
+ | Near <math>x=\infty</math>, we approximate <math>\phi</math> by | ||
+ | <center><math>(260) | ||
+ | \begin{matrix}{l} | ||
+ | { \phi \approx T_\Lambda(0)e^{-\kappa_{\Lambda}(0)(x-l_\Lambda)}\frac{\cos{(k_\Lambda(0)(z+h))}}{\cos{(k_\Lambda(0)h)}}, } | ||
+ | \end{matrix} | ||
+ | </math></center> | ||
+ | and re-express as | ||
+ | <center><math> | ||
+ | \phi \approx T_\Lambda(0)e^{-i\kappa^I_\Lambda(x-l_\Lambda)})\frac{\cosh{(k^I_\Lambda(z+h))}}{\cosh{(k^I_\Lambda h)}}, | ||
+ | </math></center> | ||
+ | where <math>k^I_\Lambda = -\Im k_{\Lambda}(0)</math> and <math>\kappa^I_\Lambda=-\Im \kappa_\Lambda(0)</math>, so that | ||
+ | <center><math> | ||
+ | \frac{\partial\phi}{\partial x} \approx -i\kappa^I_{\Lambda}T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)})\frac{\cosh{(k^I_\Lambda(z+h))}}{\cosh{(k^I_\Lambda h)}}. | ||
+ | </math></center> | ||
+ | Therefore, | ||
+ | \begin{multline} | ||
+ | \xi_2 = | ||
+ | \Im\int_{-h}^0 \biggl[\biggr.(T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)})(i\kappa^I_{\Lambda}T_\Lambda(0)^*e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)}) \\ | ||
+ | \frac{\cosh^2{(k^I_\Lambda(z+h))}}{\cosh^2{(k^I_\Lambda h)}} | ||
+ | \biggl.\biggr]dz, | ||
+ | \end{multline} | ||
+ | <center><math> | ||
+ | \begin{matrix}{rl} | ||
+ | =& { \frac{\kappa^I_{\Lambda}|T_\Lambda(0)|^2}{2\cosh^2{(k^I_\Lambda h)}} | ||
+ | \left(\frac{1}{2k^I_\Lambda}\sinh{(2k^I_\Lambda h)} + h\right)},\\ | ||
+ | \\ | ||
+ | =& { \frac{\kappa^I_{\Lambda}|T_\Lambda(0)|^2}{2k^I_\Lambda}\left(\tanh{(k^I_\Lambda h)}+\frac{k^I_\Lambda h}{\cosh^2{(k^I_\Lambda h)}}\right)}. | ||
+ | \end{matrix} | ||
+ | </math></center> | ||
+ | \subsection*{Expanding <math>\mathbf{\xi_3}</math>} | ||
+ | The ice-covered boundary condition, \eqref{Eq:IceCoveredCondition}, gives | ||
+ | <center><math>(261) | ||
+ | \xi_3 = { \Im\int_{-\infty}^{\infty}\left(\frac{\beta}{\alpha} | ||
+ | \left(\frac{\partial^2}{\partial x^2} - k_y^2\right)^2 - \gamma + \frac{1}{\alpha}\right) | ||
+ | \frac{\partial\phi}{\partial z}\centerdot\frac{\partial\phi^*}{\partial z}\bigg|_{z=0}dx.} | ||
+ | </math></center> | ||
+ | Since <math>{\frac{\partial\phi}{\partial z}\centerdot{\partial\phi^*}{\partial z}}</math> is real, | ||
+ | <math></math>\xi_3 = \Im\int_{-\infty}^{\infty}\left(\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2} | ||
+ | \left(\frac{\partial^2}{\partial x^2} - 2k_y^2\right)^2 \right) | ||
+ | \frac{\partial\phi}{\partial z}\centerdot\frac{\partial\phi^*}{\partial z}\bigg|_{z=0}dx.<math></math> | ||
+ | Integration by parts gives | ||
+ | \begin{multline}(262) | ||
+ | \xi_3 = \Im\biggl[\biggr.\left[\frac{\beta}{\alpha}\frac{\partial}{\partial x} | ||
+ | \left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) | ||
+ | \frac{\partial\phi}{\partial z}\centerdot\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty} \\ | ||
+ | -\int_{-\infty}^{\infty}\frac{\beta}{\alpha}\frac{\partial}{\partial x} | ||
+ | \left(\frac{\partial^2}{\partial x^2} - 2k_y^2\right) | ||
+ | \frac{\partial\phi}{\partial z}\centerdot\frac | ||
+ | {\partial}{\partial x}\frac{\partial\phi^*}{\partial z}dx | ||
+ | \biggl.\biggr]. | ||
+ | \end{multline} | ||
+ | As <math>{2k_y^2\frac{\partial}{\partial x}\frac{\partial\phi}{\partial z}\centerdot \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}}</math> is real and by integration by parts, \eqref{Eqn:EnergyIceCover2} becomes, | ||
+ | \begin{multline}(263) | ||
+ | \xi_3 =\Im\left[ | ||
+ | \left[\frac{\beta}{\alpha}\frac{\partial}{\partial x} | ||
+ | \left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) | ||
+ | \frac{\partial\phi}{\partial z}\centerdot\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}\right.\\ | ||
+ | - \left[\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\centerdot | ||
+ | \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty} \\ | ||
+ | + \left.\int_{-\infty}^\infty\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\centerdot | ||
+ | \frac{\partial^2}{\partial x^2}\frac{\partial\phi^*}{\partial z}dx\right]. | ||
+ | \end{multline} | ||
+ | As <math>{\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\centerdot \frac{\partial^2}{\partial x^2}\frac{\partial\phi^*}{\partial z}}</math> is real, \eqref{Eqn:Energy4} becomes | ||
+ | <center><math>(264) | ||
+ | \xi_3 = \Im\left[ | ||
+ | \left[\frac{\beta}{\alpha}\frac{\partial}{\partial x} | ||
+ | \left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) | ||
+ | \frac{\partial\phi}{\partial z}\centerdot\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}- | ||
+ | \left[\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\centerdot | ||
+ | \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}\right]. | ||
+ | </math></center> | ||
+ | Now breaking <math>\xi_3</math> down, | ||
+ | \begin{multline*} | ||
+ | \frac{\partial}{\partial x}\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) | ||
+ | \frac{\partial\phi(x_2,0)}{\partial z}\centerdot | ||
+ | \frac{\partial\phi(x_2,0)^*}{\partial z} \\ | ||
+ | \\ | ||
+ | =\left((-i\kappa^I_{\Lambda})^3k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)}\tanh{(k^I_\Lambda h)}\right.\\ | ||
+ | \left.- 2k_y^2(-i\kappa_{\Lambda}(0))k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)} \tanh{(k^I_\Lambda h)}\right)\\ | ||
+ | \left(k^I_\Lambda T_\Lambda(0)^*e^{i\kappa^I_{\Lambda}(x-l_\Lambda)}\tanh{(k^I_\Lambda h)}\right), | ||
+ | \end{multline*} | ||
+ | \begin{flalign*} | ||
+ | = i\kappa^I_{\Lambda} (k^I_\Lambda)^2\left((\kappa^I_{\Lambda})^2 + 2k_y^2 \right) \tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2. | ||
+ | \end{flalign*} | ||
+ | \begin{multline*} | ||
+ | \frac{\partial}{\partial x}\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) | ||
+ | \frac{\partial\phi(x_1,0)}{\partial z}\centerdot | ||
+ | \frac{\partial\phi(x_1,0)^*}{\partial z}\\ | ||
+ | \\ | ||
+ | = \left[ | ||
+ | i(\kappa^I_{1})^3k^I_1\left(e^{-i\kappa^I_{1}(x-r_1)}-R_1(0)e^{i\kappa^I_{1}(x-r_1)}\right) \tanh{(k^I_1 h)}\right.\\ | ||
+ | \left.- 2ik_y^2\kappa^I_{1}k^I_1\left(-e^{-i\kappa^I_{1}(x-r_1)} + R_1(0)e^{i\kappa^I_{1}(x-r_1)}\right) | ||
+ | \tanh{(k^I_1h)}\right]\\ | ||
+ | \left[k^I_1\left(e^{i\kappa^I_{1}(x-r_1)} + R_1(0)^*e^{-i\kappa^I_{1}(x-r_1))}\right) \tanh{(k^I_1h)}\right],\\\\ | ||
+ | = \left[i\kappa^I_{1}k_1(0)((\kappa^I_{1})^2 + 2k_y^2)\left(e^{-i\kappa^I_{1}(x-r_1)} - R_1(0)e^{i\kappa^I_{1}(x-r_1)}\right) | ||
+ | \tanh{(k^I_1h)}\right]\\ | ||
+ | \left[k^I_1\left(e^{i\kappa^I_{1}(x-r_1)} + R_1(0)^*e^{-i\kappa^I_{1}(x-r_1))}\right) \tanh{(k^I_1h)}\right], | ||
+ | \end{multline*} | ||
+ | <center><math> | ||
+ | = i\kappa^I_{1}(k^I_1)^2\left((\kappa^I_{1})^2 + 2k_y^2\right)\tanh^2{(k^I_1h)}\left(1 - |R_1(0)|^2\right). | ||
+ | </math></center> | ||
+ | \begin{multline*} | ||
+ | \frac{\partial^2}{\partial x^2}\frac{\partial\phi(x_2,0)}{\partial z}\centerdot | ||
+ | \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\\\\ | ||
+ | = \left[-(\kappa^I_{\Lambda})^2k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)} \tanh{(k^I_\Lambda h)}\right]\\, | ||
+ | \left[i\kappa^I_{\Lambda} k^I_\Lambda T_\Lambda(0)^*e^{i\kappa^I_{\Lambda}(x-l_\Lambda)} \tanh{(k^I_\Lambda h)}\right], | ||
+ | \end{multline*} | ||
+ | \begin{multline*} | ||
+ | = -i(\kappa^I_{\Lambda})^3(k^I_\Lambda)^2\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2, | ||
+ | \end{multline*} | ||
+ | and finally, | ||
+ | \begin{multline*} | ||
+ | \frac{\partial^2}{\partial x^1}\frac{\partial\phi(x_1,0)}{\partial z}\centerdot | ||
+ | \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\\\\ | ||
+ | = \left[-(\kappa^I_{1})^2k^I_1\left(e^{-i\kappa^I_{1}(x-r_1)} + R_1(0)e^{i\kappa^I_{1}(x-r_1)}\right) | ||
+ | \tanh{(k^I_1 h)}\right]\\ | ||
+ | \left[i\kappa^I_{1} k^I_1\left(e^{i\kappa^I_{1}(x-r_1)} - R_1(0)e^{-i\kappa^I_{1}(x-r_1)}\right) | ||
+ | \tanh{(k^I_1 h)}\right], | ||
+ | \end{multline*} | ||
+ | <center><math> | ||
+ | = -i(\kappa^I_{1})^3(k^I_1)^2\tanh^2{(k^I_1h)}\left(1 - |R_1(0)|^2\right). | ||
+ | </math></center> | ||
+ | |||
+ | We can now express \eqref{Eqn:EnergyTerm1} as | ||
+ | \begin{multline*} | ||
+ | \Im\left[ | ||
+ | \frac{\beta_\Lambda}{\alpha}\left[i\kappa^I_{\Lambda} (k^I_\Lambda)^2\left((\kappa^I_{\Lambda})^2 + 2k_y^2 \right) | ||
+ | \tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right] \right.\\ | ||
+ | -\left.\frac{\beta_1}{\alpha}\left[i\kappa^I_{1}(k^I_1)^2\left((\kappa^I_{1})^2 + 2k_y^2\right)\tanh^2{(k^I_1h)} | ||
+ | \left(1 - |R_1(0)|^2\right)\right] \right.\\ | ||
+ | -\left.\frac{\beta_\Lambda}{\alpha}\left[-i(\kappa^I_{\Lambda})^3(k^I_\Lambda)^2\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]\right.\\ | ||
+ | +\left.\frac{\beta_1}{\alpha}\left[-i(\kappa^I_{1})^3(k^I_1)^2\tanh^2{(k^I_1h)} \left(1 - |R_1(0)|^2\right)\right]\right] | ||
+ | \end{multline*} | ||
+ | \begin{multline*} | ||
+ | = \frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda} (k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 + k_y^2)\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]\\ | ||
+ | -\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 + k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right] . | ||
+ | \end{multline*} | ||
+ | |||
= Solving the Energy Balance Equation = | = Solving the Energy Balance Equation = | ||
Revision as of 04:19, 8 July 2008
\chapter{The Energy Balance Equation} (255) Based on the method used in evans_davies68, a check can be made to ensure the solutions of the floating plate problem are in energy balance. This is simply a condition that the incident energy is equal to the sum of the radiated energy. When the first and final plates have different properties, the energy balance equation is derived by applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate evans_davies68. We set up the problem as given in Figure 256 \begin{figure}[H] \begin{center} \includegraphics[width=.8\textwidth]{Figures/EnergyBalanceTricks} \end{center} \caption[A diagram depicting the area [math]\displaystyle{ \mathcal{U} }[/math] which is bounded by the rectangle [math]\displaystyle{ \mathcal{S} }[/math].] {A diagram depicting the area [math]\displaystyle{ \mathcal{U} }[/math] which is bounded by the rectangle [math]\displaystyle{ \mathcal{S} }[/math]. The rectangle [math]\displaystyle{ \mathcal{S} }[/math] is bounded by [math]\displaystyle{ -h\leq z \leq0 }[/math] and [math]\displaystyle{ -\infty\leq x \leq \infty }[/math].} (256) \end{figure}
Applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate [math]\displaystyle{ \phi^* }[/math] gives
where [math]\displaystyle{ n }[/math] denotes the outward plane normal to the boundary and [math]\displaystyle{ l }[/math] denotes the plane parallel to the boundary. As [math]\displaystyle{ \phi }[/math] and [math]\displaystyle{ \phi^* }[/math] satisfy \eqref{eqn:Laplace2}, the left hand side of \eqref{eqn:Green1} vanishes so that \eqref{eqn:Green1} reduces to
Expanding gives
where
and
where [math]\displaystyle{ \Im }[/math] denotes the imaginary part. \subsection*{Expanding [math]\displaystyle{ \mathbf{\xi_1} }[/math]} Near [math]\displaystyle{ x=-\infty }[/math], we approximate [math]\displaystyle{ \phi }[/math] by
To simplify the derivation, we re-express \eqref{eqn:EnergyPhiLeft1} as
where [math]\displaystyle{ k^I_1 = -\Im k_{1}(0) }[/math] and [math]\displaystyle{ \kappa^I_1=-\Im \kappa_1(0) }[/math], so that
Therefore,
where [math]\displaystyle{ R_1(0)^* }[/math] is the conjugate of [math]\displaystyle{ R_1(0) }[/math]. \subsection*{Expanding [math]\displaystyle{ \mathbf{\xi_2} }[/math]} Near [math]\displaystyle{ x=\infty }[/math], we approximate [math]\displaystyle{ \phi }[/math] by
and re-express as
where [math]\displaystyle{ k^I_\Lambda = -\Im k_{\Lambda}(0) }[/math] and [math]\displaystyle{ \kappa^I_\Lambda=-\Im \kappa_\Lambda(0) }[/math], so that
Therefore, \begin{multline} \xi_2 = \Im\int_{-h}^0 \biggl[\biggr.(T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)})(i\kappa^I_{\Lambda}T_\Lambda(0)^*e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)}) \\ \frac{\cosh^2{(k^I_\Lambda(z+h))}}{\cosh^2{(k^I_\Lambda h)}} \biggl.\biggr]dz, \end{multline}
\subsection*{Expanding [math]\displaystyle{ \mathbf{\xi_3} }[/math]} The ice-covered boundary condition, \eqref{Eq:IceCoveredCondition}, gives
Since [math]\displaystyle{ {\frac{\partial\phi}{\partial z}\centerdot{\partial\phi^*}{\partial z}} }[/math] is real, [math]\displaystyle{ }[/math]\xi_3 = \Im\int_{-\infty}^{\infty}\left(\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2} \left(\frac{\partial^2}{\partial x^2} - 2k_y^2\right)^2 \right) \frac{\partial\phi}{\partial z}\centerdot\frac{\partial\phi^*}{\partial z}\bigg|_{z=0}dx.[math]\displaystyle{ }[/math] Integration by parts gives \begin{multline}(262) \xi_3 = \Im\biggl[\biggr.\left[\frac{\beta}{\alpha}\frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) \frac{\partial\phi}{\partial z}\centerdot\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty} \\ -\int_{-\infty}^{\infty}\frac{\beta}{\alpha}\frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial x^2} - 2k_y^2\right) \frac{\partial\phi}{\partial z}\centerdot\frac {\partial}{\partial x}\frac{\partial\phi^*}{\partial z}dx \biggl.\biggr]. \end{multline} As [math]\displaystyle{ {2k_y^2\frac{\partial}{\partial x}\frac{\partial\phi}{\partial z}\centerdot \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}} }[/math] is real and by integration by parts, \eqref{Eqn:EnergyIceCover2} becomes, \begin{multline}(263) \xi_3 =\Im\left[ \left[\frac{\beta}{\alpha}\frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) \frac{\partial\phi}{\partial z}\centerdot\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}\right.\\ - \left[\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\centerdot \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty} \\ + \left.\int_{-\infty}^\infty\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\centerdot \frac{\partial^2}{\partial x^2}\frac{\partial\phi^*}{\partial z}dx\right]. \end{multline} As [math]\displaystyle{ {\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\centerdot \frac{\partial^2}{\partial x^2}\frac{\partial\phi^*}{\partial z}} }[/math] is real, \eqref{Eqn:Energy4} becomes
Now breaking [math]\displaystyle{ \xi_3 }[/math] down, \begin{multline*} \frac{\partial}{\partial x}\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) \frac{\partial\phi(x_2,0)}{\partial z}\centerdot \frac{\partial\phi(x_2,0)^*}{\partial z} \\ \\ =\left((-i\kappa^I_{\Lambda})^3k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)}\tanh{(k^I_\Lambda h)}\right.\\ \left.- 2k_y^2(-i\kappa_{\Lambda}(0))k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)} \tanh{(k^I_\Lambda h)}\right)\\ \left(k^I_\Lambda T_\Lambda(0)^*e^{i\kappa^I_{\Lambda}(x-l_\Lambda)}\tanh{(k^I_\Lambda h)}\right), \end{multline*} \begin{flalign*} = i\kappa^I_{\Lambda} (k^I_\Lambda)^2\left((\kappa^I_{\Lambda})^2 + 2k_y^2 \right) \tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2. \end{flalign*} \begin{multline*} \frac{\partial}{\partial x}\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right) \frac{\partial\phi(x_1,0)}{\partial z}\centerdot \frac{\partial\phi(x_1,0)^*}{\partial z}\\ \\ = \left[ i(\kappa^I_{1})^3k^I_1\left(e^{-i\kappa^I_{1}(x-r_1)}-R_1(0)e^{i\kappa^I_{1}(x-r_1)}\right) \tanh{(k^I_1 h)}\right.\\ \left.- 2ik_y^2\kappa^I_{1}k^I_1\left(-e^{-i\kappa^I_{1}(x-r_1)} + R_1(0)e^{i\kappa^I_{1}(x-r_1)}\right) \tanh{(k^I_1h)}\right]\\ \left[k^I_1\left(e^{i\kappa^I_{1}(x-r_1)} + R_1(0)^*e^{-i\kappa^I_{1}(x-r_1))}\right) \tanh{(k^I_1h)}\right],\\\\ = \left[i\kappa^I_{1}k_1(0)((\kappa^I_{1})^2 + 2k_y^2)\left(e^{-i\kappa^I_{1}(x-r_1)} - R_1(0)e^{i\kappa^I_{1}(x-r_1)}\right) \tanh{(k^I_1h)}\right]\\ \left[k^I_1\left(e^{i\kappa^I_{1}(x-r_1)} + R_1(0)^*e^{-i\kappa^I_{1}(x-r_1))}\right) \tanh{(k^I_1h)}\right], \end{multline*}
\begin{multline*} \frac{\partial^2}{\partial x^2}\frac{\partial\phi(x_2,0)}{\partial z}\centerdot \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\\\\ = \left[-(\kappa^I_{\Lambda})^2k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x-l_\Lambda)} \tanh{(k^I_\Lambda h)}\right]\\, \left[i\kappa^I_{\Lambda} k^I_\Lambda T_\Lambda(0)^*e^{i\kappa^I_{\Lambda}(x-l_\Lambda)} \tanh{(k^I_\Lambda h)}\right], \end{multline*} \begin{multline*}
= -i(\kappa^I_{\Lambda})^3(k^I_\Lambda)^2\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2,
\end{multline*} and finally, \begin{multline*} \frac{\partial^2}{\partial x^1}\frac{\partial\phi(x_1,0)}{\partial z}\centerdot \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\\\\ = \left[-(\kappa^I_{1})^2k^I_1\left(e^{-i\kappa^I_{1}(x-r_1)} + R_1(0)e^{i\kappa^I_{1}(x-r_1)}\right) \tanh{(k^I_1 h)}\right]\\ \left[i\kappa^I_{1} k^I_1\left(e^{i\kappa^I_{1}(x-r_1)} - R_1(0)e^{-i\kappa^I_{1}(x-r_1)}\right) \tanh{(k^I_1 h)}\right], \end{multline*}
We can now express \eqref{Eqn:EnergyTerm1} as \begin{multline*} \Im\left[ \frac{\beta_\Lambda}{\alpha}\left[i\kappa^I_{\Lambda} (k^I_\Lambda)^2\left((\kappa^I_{\Lambda})^2 + 2k_y^2 \right) \tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right] \right.\\ -\left.\frac{\beta_1}{\alpha}\left[i\kappa^I_{1}(k^I_1)^2\left((\kappa^I_{1})^2 + 2k_y^2\right)\tanh^2{(k^I_1h)} \left(1 - |R_1(0)|^2\right)\right] \right.\\ -\left.\frac{\beta_\Lambda}{\alpha}\left[-i(\kappa^I_{\Lambda})^3(k^I_\Lambda)^2\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]\right.\\ +\left.\frac{\beta_1}{\alpha}\left[-i(\kappa^I_{1})^3(k^I_1)^2\tanh^2{(k^I_1h)} \left(1 - |R_1(0)|^2\right)\right]\right] \end{multline*} \begin{multline*} = \frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda} (k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 + k_y^2)\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]\\ -\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 + k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right] . \end{multline*}
Solving the Energy Balance Equation
Pulling it all together, \eqref{Eqn:EnergyPhi} becomes
which can be expressed as
where [math]\displaystyle{ D }[/math] is given by