Difference between revisions of "Eigenfunction Matching for a Submerged Circular Dock"
Line 64: | Line 64: | ||
<center> | <center> | ||
<math> | <math> | ||
− | I_{n}(k_{0}a)A_{0}\delta_{0l}+a_{ln}K_{n}(k_{l}a)A_{l} | + | I_{n}(k_{0}^{h}a)A_{0}\delta_{0l}+a_{ln}K_{n}(k_{l}^{h}a)A_{l} |
− | = | + | =\sum_{m=0}^{\infty}b_{mn}I_{n}(k_{m}^{\prime}a)B_{ml}^{\prime} |
</math> | </math> | ||
</center> | </center> | ||
Line 71: | Line 71: | ||
<center> | <center> | ||
<math> | <math> | ||
− | k_{0}I_{n}^{\prime}(k_{0}a)A_{0}\delta_{0l}+a_{ln}k_{l}K_{n}^{\prime | + | k_{0}I_{n}^{\prime}(k_{0}^{h}a)A_{0}\delta_{0l}+a_{ln}k_{l}^{h}K_{n}^{\prime |
}(k_{l}a)A_{l} | }(k_{l}a)A_{l} | ||
− | = | + | = \sum_{m=0}^{\infty}b_{mn}k_{m}^{\prime}I_{n}^{\prime}(k_{m}^{\prime}a)B_{ml}^{\prime} |
− | \sum_{m= | ||
</math> | </math> | ||
</center> | </center> | ||
− | + | where the definition of <math>A_{l}</math> and <math>B_{ml}^{\prime}</math> can be found in | |
+ | [[Eigenfunction Matching for a Submerged Semi-Infinite Dock]] | ||
== Additional code == | == Additional code == |
Revision as of 03:44, 25 July 2008
Introduction
We present here very briefly the theory for a submerged circular dock. The details of the method can be found in Eigenfunction Matching for a Submerged Semi-Infinite Dock and Eigenfunction Matching for a Circular Dock
Governing Equations
We begin with the Frequency Domain Problem. We will use a cylindrical coordinate system, [math]\displaystyle{ (r,\theta,z) }[/math], assumed to have its origin at the centre of the circular plate which has radius [math]\displaystyle{ a }[/math]. The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as
[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]
[math]\displaystyle{ \phi_{z}=0, \,\, z=-h, }[/math]
[math]\displaystyle{ \phi_{z}=0, \,\, z=-d,\,r\lt a }[/math]
We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ r\rightarrow\infty }[/math]. The subscript [math]\displaystyle{ z }[/math] denotes the derivative in [math]\displaystyle{ z }[/math]-direction.
Separation of Variables
We can separate variables and we obtain the following expression for the velocity potential
Therefore the potential can be expanded as
[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n} (k_{m}^{h}r)e^{i n\theta}\phi^{h}_{m}(z), \;\;r\gt a }[/math]
and
[math]\displaystyle{ \phi(r,\theta,z)= \sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}b_{mn} I_{n}(k_{m}^{\prime}r)e^{i n\theta}\chi_{m}(z), \;\;r\lt a }[/math]
where the definition of [math]\displaystyle{ k_{m}^{h} }[/math], [math]\displaystyle{ k_{m}^{\prime} }[/math], [math]\displaystyle{ \phi^{h}_{m} }[/math] and [math]\displaystyle{ \chi_{m}(z) }[/math] can be found in Eigenfunction Matching for a Submerged Semi-Infinite Dock and the expansion in the cylindrical eigenfunctions can be found in Eigenfunction Matching for a Circular Dock
Equations to solve
[math]\displaystyle{ I_{n}(k_{0}^{h}a)A_{0}\delta_{0l}+a_{ln}K_{n}(k_{l}^{h}a)A_{l} =\sum_{m=0}^{\infty}b_{mn}I_{n}(k_{m}^{\prime}a)B_{ml}^{\prime} }[/math]
and
[math]\displaystyle{ k_{0}I_{n}^{\prime}(k_{0}^{h}a)A_{0}\delta_{0l}+a_{ln}k_{l}^{h}K_{n}^{\prime }(k_{l}a)A_{l} = \sum_{m=0}^{\infty}b_{mn}k_{m}^{\prime}I_{n}^{\prime}(k_{m}^{\prime}a)B_{ml}^{\prime} }[/math]
where the definition of [math]\displaystyle{ A_{l} }[/math] and [math]\displaystyle{ B_{ml}^{\prime} }[/math] can be found in Eigenfunction Matching for a Submerged Semi-Infinite Dock
Additional code
This program requires dispersion_free_surface.m to run