Difference between revisions of "Eigenfunction Matching for a Circular Dock"
Line 235: | Line 235: | ||
</math> | </math> | ||
</center> | </center> | ||
+ | |||
+ | = A Simple Method To Calculate The [[Diffraction Transfer Matrix]] For The Case Of A Circular Plate = | ||
= Numerical Solution = | = Numerical Solution = |
Revision as of 01:20, 4 August 2008
Introduction
We show here a solution for a dock on Finite Depth water, which is circular. This is the three-dimensional analog of the Eigenfunction Matching for a Semi-Infinite Dock.
Governing Equations
We begin with the Frequency Domain Problem. We will use a cylindrical coordinate system, [math]\displaystyle{ (r,\theta,z) }[/math], assumed to have its origin at the centre of the circular plate which has radius [math]\displaystyle{ a }[/math]. The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as
[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]
[math]\displaystyle{ \phi_{z}=0, \,\, z=-h, }[/math]
[math]\displaystyle{ \phi_{z}=0, \,\, z=0,\,r\lt a }[/math]
We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ r\rightarrow\infty }[/math]. The subscript [math]\displaystyle{ z }[/math] denotes the derivative in [math]\displaystyle{ z }[/math]-direction.
Solution Method
Separation of variables
We now separate variables, noting that since the problem has circular symmetry we can write the potential as
[math]\displaystyle{ \phi(r,\theta,z)=\zeta(z)\sum_{n=-\infty}^{\infty}\rho_{n}(r)e^{i n \theta} }[/math]
Applying Laplace's equation we obtain
[math]\displaystyle{ \zeta_{zz}+\mu^{2}\zeta=0 }[/math]
so that:
[math]\displaystyle{ \zeta=\cos\mu(z+H) }[/math]
where the separation constant [math]\displaystyle{ \mu^{2} }[/math] must satisfy the Dispersion Relation for a Free Surface
[math]\displaystyle{ k\tan\left( kh\right) =-\alpha,\quad r\gt a }[/math]
and
[math]\displaystyle{ \kappa\tan(\kappa h)=0,\quad r\lt a }[/math]
Note that we have set [math]\displaystyle{ \mu=k }[/math] under the free surface and [math]\displaystyle{ \mu=\kappa }[/math] under the dock. We denote the positive imaginary solution of the Dispersion Relation for a Free Surface by [math]\displaystyle{ k_{0} }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} }[/math], [math]\displaystyle{ m\geq1 }[/math]. The solutions of second equation will be denoted by [math]\displaystyle{ \kappa_{m} = m\pi/h }[/math], [math]\displaystyle{ m\geq 0 }[/math].
We define
[math]\displaystyle{ \phi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region and
[math]\displaystyle{ \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0 }[/math]
as the vertical eigenfunction of the potential in the dock covered region. For later reference, we note that:
[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{m}=\frac{1}{2}\left( \frac{\cos k_{m}h\sin k_{m}h+k_{m}h}{k_{m}\cos ^{2}k_{m}h}\right) }[/math]
and
[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{n}(z)\psi_{m}(z) d z=B_{mn} }[/math]
where
and
[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) d z=C_{m}\delta_{mn} }[/math]
where
We now solve for the function [math]\displaystyle{ \rho_{n}(r) }[/math]. Using Laplace's equation in polar coordinates we obtain
[math]\displaystyle{ \frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}r^{2}}+\frac{1}{r} \frac{\mathrm{d}\rho_{n}}{\mathrm{d}r}-\left( \frac{n^{2}}{r^{2}}+\mu^{2}\right) \rho_{n}=0 }[/math]
where [math]\displaystyle{ \mu }[/math] is [math]\displaystyle{ k_{m} }[/math] or [math]\displaystyle{ \kappa_{m}, }[/math] depending on whether [math]\displaystyle{ r }[/math] is greater or less than [math]\displaystyle{ a }[/math]. We can convert this equation to the standard form by substituting [math]\displaystyle{ y=\mu r }[/math] (provided that [math]\displaystyle{ \mu\neq 0 }[/math]to obtain
[math]\displaystyle{ y^{2}\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}y^{2}}+y\frac{\mathrm{d}\rho_{n} }{\rm{d}y}-(n^{2}+y^{2})\rho_{n}=0 }[/math]
The solution of this equation is a linear combination of the modified Bessel functions of order [math]\displaystyle{ n }[/math], [math]\displaystyle{ I_{n}(y) }[/math] and [math]\displaystyle{ K_{n}(y) }[/math] (Abramowitz and Stegun 1964). Since the solution must be bounded we know that under the plate the solution will be a linear combination of [math]\displaystyle{ I_{n}(y) }[/math] while outside the plate the solution will be a linear combination of [math]\displaystyle{ K_{n}(y) }[/math]. The case [math]\displaystyle{ \kappa_0 =0 }[/math] is a special case and the solution under the dock is [math]\displaystyle{ (r/a)^{|n|} }[/math]. Therefore the potential can be expanded as
[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n} (k_{m}r)e^{i n\theta}\phi_{m}(z), \;\;r\gt a }[/math]
and
[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}b_{0n}(r/a)^{|n|} e^{i n\theta}\psi_{0}(z)+ \sum_{n=-\infty}^{\infty}\sum_{m=1}^{\infty}b_{mn} I_{n}(\kappa_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r\lt a }[/math]
where [math]\displaystyle{ a_{mn} }[/math] and [math]\displaystyle{ b_{mn} }[/math] are the coefficients of the potential in the open water and the plate covered region respectively.
Incident potential
The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. The incident potential can therefore be written as
[math]\displaystyle{ \phi^{\mathrm{I}} =e^{k_{0}x}\phi_{0}\left( z\right) =\sum\limits_{n=-\infty}^{\infty} I_{n}(k_{0}r)\phi_{0}\left(z\right) e^{i n \theta} }[/math]
An infinite dimensional system of equations
The potential and its derivative must be continuous across the transition from open water to the plate covered region. Therefore, the potentials and their derivatives at [math]\displaystyle{ r=a }[/math] have to be equal for each angle and we obtain
[math]\displaystyle{ I_{n}(k_{0}a)\phi_{0}\left( z\right) + \sum_{m=0}^{\infty} a_{mn} K_{n}(k_{m}a)\phi_{m}\left( z\right) = b_{0n} \psi_{0}(z) +\sum_{m=1}^{\infty}b_{mn}I_{n}(\kappa_{m}a)\psi_{m}(z) }[/math]
and
[math]\displaystyle{ k_{0}I_{n}^{\prime}(k_{0}a)\phi_{0}\left( z\right) +\sum _{m=0}^{\infty} a_{mn}k_{m}K_{n}^{\prime}(k_{m}a)\phi_{m}\left( z\right) =b_{0n} \frac{|n|}{a} \psi_{0}(z) +\sum_{m=1}^{\infty} b_{mn}\kappa_{m}I_{n}^{\prime}(\kappa_{m}a)\psi _{m}(z) }[/math]
for each [math]\displaystyle{ n }[/math]. We solve these equations by multiplying both equations by [math]\displaystyle{ \phi_{l}(z) }[/math] and integrating from [math]\displaystyle{ -H }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:
[math]\displaystyle{ I_{n}(k_{0}a)A_{0}\delta_{0l}+a_{ln}K_{n}(k_{l}a)A_{l} =b_{0n}B_{0l} + \sum_{m=1}^{\infty}b_{mn}I_{n}(\kappa_{m}a)B_{ml} }[/math]
and
[math]\displaystyle{ k_{0}I_{n}^{\prime}(k_{0}a)A_{0}\delta_{0l}+a_{ln}k_{l}K_{n}^{\prime }(k_{l}a)A_{l} = b_{0n}B_{0l}\frac{|n|}{a} + \sum_{m=1}^{\infty}b_{mn}\kappa_{m}I_{n}^{\prime}(\kappa_{m}a)B_{ml} }[/math]
A Simple Method To Calculate The Diffraction Transfer Matrix For The Case Of A Circular Plate
Numerical Solution
To solve the system of equations we set the upper limit of [math]\displaystyle{ l }[/math] to be [math]\displaystyle{ M }[/math].
Matlab Code
A program to calculate the coefficients for circular dock problems can be found here circle_dock_matching_one_n.m Note that this problem solves only for a single n.
Additional code
This program requires dispersion_free_surface.m to run