Difference between revisions of "Template:Separation of variables for a dock"
From WikiWaves
Jump to navigationJump to searchLine 21: | Line 21: | ||
</center> | </center> | ||
The solution is | The solution is | ||
− | <math>\kappa_{m}=m\pi/h</math>, <math>m\geq 0</math> | + | <math>k=\kappa_{m}=m\pi/h</math>, <math>m\geq 0</math> and |
<center> | <center> | ||
<math> | <math> | ||
− | + | Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad | ||
m\geq 0 | m\geq 0 | ||
</math> | </math> | ||
</center> | </center> | ||
− | + | We note that | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<center> | <center> | ||
<math> | <math> |
Revision as of 04:27, 26 August 2008
Separation of Variables for a Dock
The separation of variables equation for a dock
[math]\displaystyle{ \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} + k^2 Z =0. }[/math]
subject to the boundary conditions
[math]\displaystyle{ \frac{dZ}{dz}(-h) = 0 }[/math]
and
[math]\displaystyle{ \frac{dZ}{dz}(0) = 0 }[/math]
The solution is [math]\displaystyle{ k=\kappa_{m}=m\pi/h }[/math], [math]\displaystyle{ m\geq 0 }[/math] and
[math]\displaystyle{ Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0 }[/math]
We note that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) d z=C_{m}\delta_{mn} }[/math]
where