Difference between revisions of "Sommerfeld Radiation Condition"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
 
This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only
 
This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only
outgoing at infinity. It depends on the convention regarding  
+
outgoing at infinity. It depends on the convention regarding whether the time dependence
 
+
is <math>\exp (i\omega t)\,</math> or <math>\exp (-i\omega t)\,</math>
 +
Assuming the former (which is the standard convention on this wiki)
 
In two-dimensions the condition is  
 
In two-dimensions the condition is  
 
+
<center>
 
<math>
 
<math>
\left(  \frac{\partial}{\partial|x|}-{i}k\right)
+
\left(  \frac{\partial}{\partial|x|}+{i}k\right)
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
</math>
 
</math>
 
+
</center>
 
where <math>\phi^{\mathrm{{In}}}</math> is the incident potential and <math>k</math>
 
where <math>\phi^{\mathrm{{In}}}</math> is the incident potential and <math>k</math>
 
is the wave number.
 
is the wave number.
  
 
In three-dimensions the condition is  
 
In three-dimensions the condition is  
 +
<center>
 +
<math>
 +
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right)
 +
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
 +
</math>
 +
</center>
  
 +
If the time dependence is assumed to be <math>\exp (-i\omega t)\,</math> then we
 +
have in two-dimensions
 +
<center>
 +
<math>
 +
\left(  \frac{\partial}{\partial|x|}-{i}k\right)
 +
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 +
</math>
 +
</center>
 +
and in three-dimensions
 +
<center>
 
<math>
 
<math>
 
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right)
 
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right)
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
 
</math>
 
</math>
 +
</center>
  
 
[[Category:Linear Water-Wave Theory]]
 
[[Category:Linear Water-Wave Theory]]

Revision as of 23:48, 10 September 2008

This is a condition for the Frequency Domain Problem that the scattered wave is only outgoing at infinity. It depends on the convention regarding whether the time dependence is [math]\displaystyle{ \exp (i\omega t)\, }[/math] or [math]\displaystyle{ \exp (-i\omega t)\, }[/math] Assuming the former (which is the standard convention on this wiki) In two-dimensions the condition is

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ \phi^{\mathrm{{In}}} }[/math] is the incident potential and [math]\displaystyle{ k }[/math] is the wave number.

In three-dimensions the condition is

[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]

If the time dependence is assumed to be [math]\displaystyle{ \exp (-i\omega t)\, }[/math] then we have in two-dimensions

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

and in three-dimensions

[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]