Difference between revisions of "User talk:Wheo001"
Line 28: | Line 28: | ||
We can imagine the graph of cubic function which has 3 real roots and we can now write a function | We can imagine the graph of cubic function which has 3 real roots and we can now write a function | ||
<center><math> f(H)= \frac{-1}{2}(H-H_1)(H-H_2)(H-H_3)</math></center> | <center><math> f(H)= \frac{-1}{2}(H-H_1)(H-H_2)(H-H_3)</math></center> | ||
+ | |||
+ | |||
+ | From the equation <math>f(H)=\frac{1}{6}H_\xi^2</math>, we require <math>f(H)>0.</math> | ||
+ | |||
+ | We are only interested in solution for <math>H_2 < H < H_3</math> and we need <math>H_2 < H_3</math>. | ||
+ | |||
+ | and now solve equation in terms of the roots <math>H_i,</math> | ||
+ | |||
+ | We define <math>X=\frac{H}{H_3}</math>, and obtain | ||
+ | |||
+ | <center><math>X_\xi^2=3H_3(X-X_1)(X-X_2)(1-X)</math></center> | ||
+ | where <math>X_i=\frac{H_i}{H}</math> | ||
+ | |||
+ | crest to be at <math>\xi=0 and X(0)=0</math>, | ||
+ | |||
+ | and a further variable Y via | ||
+ | |||
+ | <center><math> X=1+(X_2-1)sin^2(Y) </math></center>, | ||
+ | |||
+ | |||
+ | <center><math>Y_\xi^2=\frac{3}{4}H_3(1-X_1)\left\{ 1-\frac{(1-X_2)}{(1-X_1)}sin(Y)^2 \right\} (equation1)</math></center> | ||
+ | |||
+ | so <math>Y(0)=0.</math> | ||
+ | |||
+ | |||
+ | In order to get this into a completely standard form we define | ||
+ | |||
+ | <center><math>k^2=\frac{1-X_2}{1-X_1}, l=\frac{3}{4}H_3(1-X_1). (equation2) </math></center> | ||
+ | |||
+ | Clearly, <math>0 \leq k^2 \leq 1<math> <math>l>0.</math> |
Revision as of 02:57, 14 October 2008
Travelling Wave Solutions of the KdV Equation
The KdV equation has two qualitatively different types of permanent form travelling wave solution. These are referred to as cnoidal waves and solitary waves.
Introduction
Assume we have wave travelling with speed [math]\displaystyle{ V_0 }[/math] without change of form,
and substitue into KdV equation then we obtain
where [math]\displaystyle{ \xi=z-V_0\tau }[/math] is the travelling wave coordinate.
We integrate this equation twice with respect to [math]\displaystyle{ \xi }[/math] to give
where D_1 and D_2 are constants of integration.
We define [math]\displaystyle{ f(H)= V_oH^2-\frac{1}{2}H^3+D_1H+D2 }[/math], so [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math]
It turns out that we require 3 real roots to obtain periodic solutions. Let roots be [math]\displaystyle{ H_1 \leq H_2 \leq H_3 }[/math].
We can imagine the graph of cubic function which has 3 real roots and we can now write a function
From the equation [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math], we require [math]\displaystyle{ f(H)\gt 0. }[/math]
We are only interested in solution for [math]\displaystyle{ H_2 \lt H \lt H_3 }[/math] and we need [math]\displaystyle{ H_2 \lt H_3 }[/math].
and now solve equation in terms of the roots [math]\displaystyle{ H_i, }[/math]
We define [math]\displaystyle{ X=\frac{H}{H_3} }[/math], and obtain
where [math]\displaystyle{ X_i=\frac{H_i}{H} }[/math]
crest to be at [math]\displaystyle{ \xi=0 and X(0)=0 }[/math],
and a further variable Y via
,
so [math]\displaystyle{ Y(0)=0. }[/math]
In order to get this into a completely standard form we define
Clearly, [math]\displaystyle{ 0 \leq k^2 \leq 1\lt math\gt \lt math\gt l\gt 0. }[/math]