Difference between revisions of "Eigenfunctions for a Uniform Free Beam"
Marko tomic (talk | contribs) |
Marko tomic (talk | contribs) |
||
Line 70: | Line 70: | ||
<center> | <center> | ||
− | <math> | + | <math>C_2 = C_4 = 0 \Rightarrow w_n(x) = C_1 \sin(\lambda_n x) + C_3 \sinh(\lambda_n x)</math> |
</center> | </center> | ||
Line 78: | Line 78: | ||
<math> | <math> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | - \ | + | - \sin(\lambda_n l)&\sinh(\lambda_n l)\\ |
− | \ | + | -\cos(\lambda_n l)&\cosh(\lambda_n l)\\ |
\end{bmatrix} | \end{bmatrix} | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | + | C_1\\ | |
− | + | C_3\\ | |
\end{bmatrix} | \end{bmatrix} | ||
Line 98: | Line 98: | ||
For a nontrivial solution one gets: | For a nontrivial solution one gets: | ||
<center> | <center> | ||
− | <math>\tan(\lambda_n l)+\tanh(\lambda_n l)=0\,</math> | + | <math>-\tan(\lambda_n l)+\tanh(\lambda_n l)=0\,</math> |
</center> | </center> | ||
Line 108: | Line 108: | ||
Symmetrical natural modes can be written in normalized form as : | Symmetrical natural modes can be written in normalized form as : | ||
<center> | <center> | ||
− | <math>w_n(x) = \frac{1}{2}\left( \frac{\ | + | <math>w_n(x) = \frac{1}{2}\left( \frac{\sin(\lambda_n x)}{\sin(\lambda_n l)}+\frac{\sinh(\lambda_n x)}{\sinh(\lambda_n l)} \right ) |
</math> | </math> | ||
</center> | </center> |
Revision as of 23:01, 6 November 2008
We can find a the eigenfunction which satisfy
[math]\displaystyle{ \partial_x^4 w_n = \lambda_n^4 w_n }[/math]
plus the edge conditions.
General solution of the differential equation is :
[math]\displaystyle{ w_n(x) = C_1 \sin(\lambda_n x) + C_2 \cos(\lambda_n x) + C_3 \sinh(\lambda_n x) + C_4 \cosh(\lambda_n x)\, }[/math]
Due to symmetry of the problem, dry natural vibrations of a free beam can be split into two different sets of modes, symmetric (even) modes and skew-symmetric (odd) modes.
Symmetric modes
[math]\displaystyle{ C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 \cos(\lambda_n x) + C_4 \cosh(\lambda_n x) }[/math]
By imposing boundary conditions at [math]\displaystyle{ x = l }[/math] :
[math]\displaystyle{ \begin{bmatrix} - \cos(\lambda_n l)&\cosh(\lambda_n l)\\ \sin(\lambda_n l)&\sinh(\lambda_n l)\\ \end{bmatrix} \begin{bmatrix} C_2\\ C_4\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]
For a nontrivial solution one gets:
[math]\displaystyle{ \tan(\lambda_n l)+\tanh(\lambda_n l)=0\, }[/math]
Having obtained eigenvalues [math]\displaystyle{ \lambda_n }[/math], natural requency can be readily calculated :
[math]\displaystyle{ \omega_n = \frac{(\lambda_n l)^2}{l^2}\sqrt\frac{EI}{m} }[/math]
Symmetrical natural modes can be written in normalized form as :
[math]\displaystyle{ w_n(x) = \frac{1}{2}\left( \frac{\cos(\lambda_n x)}{\cos(\lambda_n l)}+\frac{\cosh(\lambda_n x)}{\cosh(\lambda_n l)} \right ) }[/math]
Skew-symmetric modes
[math]\displaystyle{ C_2 = C_4 = 0 \Rightarrow w_n(x) = C_1 \sin(\lambda_n x) + C_3 \sinh(\lambda_n x) }[/math]
By imposing boundary conditions at [math]\displaystyle{ x = l }[/math] :
[math]\displaystyle{ \begin{bmatrix} - \sin(\lambda_n l)&\sinh(\lambda_n l)\\ -\cos(\lambda_n l)&\cosh(\lambda_n l)\\ \end{bmatrix} \begin{bmatrix} C_1\\ C_3\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]
For a nontrivial solution one gets:
[math]\displaystyle{ -\tan(\lambda_n l)+\tanh(\lambda_n l)=0\, }[/math]
Having obtained eigenvalues [math]\displaystyle{ \lambda_n }[/math], natural requency can be readily calculated :
[math]\displaystyle{ \omega_n = \frac{(\lambda_n l)^2}{l^2}\sqrt\frac{EI}{m} }[/math]
Symmetrical natural modes can be written in normalized form as :
[math]\displaystyle{ w_n(x) = \frac{1}{2}\left( \frac{\sin(\lambda_n x)}{\sin(\lambda_n l)}+\frac{\sinh(\lambda_n x)}{\sinh(\lambda_n l)} \right ) }[/math]