Difference between revisions of "Category:Linear Hydroelasticity"
Marko tomic (talk | contribs) |
Marko tomic (talk | contribs) |
||
Line 22: | Line 22: | ||
<center><math>\begin{bmatrix}M\end{bmatrix}</math> is structural mass matrix,</center> | <center><math>\begin{bmatrix}M\end{bmatrix}</math> is structural mass matrix,</center> | ||
<center><math>\begin{bmatrix}D\end{bmatrix}</math> is generalized nodal displacements vector,</center> | <center><math>\begin{bmatrix}D\end{bmatrix}</math> is generalized nodal displacements vector,</center> | ||
− | <center><math>\begin{bmatrix}F\end{bmatrix}</math> is generalized force vector.</center> | + | <center><math>\begin{bmatrix}F\end{bmatrix}</math> is generalized force vector (fluid forces, gravity foreces,tec.).</center> |
Line 30: | Line 30: | ||
− | If one assumes trial solution as <math>\begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t}</math> then the eigenvalue problem reduces to <math>\left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix}</math> | + | If one assumes trial solution as <math>\begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t}</math> then the eigenvalue problem reduces to <math>\left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix}</math>. As a solution of the eigen value problem fore each natural mode one obtains <math>\omega_n</math>, the n-th dry natural frequency and <math>\begin{bmatrix}w_n\end{bmatrix}</math> is the corresponding dry natural mode. |
Revision as of 00:21, 14 November 2008
Problems in Linear Water-Wave theory in which there is an elastic body.
Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory.
local FE [math]\displaystyle{ \Rightarrow }[/math] global FE model
Dynamic equation of motion in matrix form can be expressed as:
The eigenvalue problem for the "dry" natural vibrations yields:
If one assumes trial solution as [math]\displaystyle{ \begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t} }[/math] then the eigenvalue problem reduces to [math]\displaystyle{ \left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix} }[/math]. As a solution of the eigen value problem fore each natural mode one obtains [math]\displaystyle{ \omega_n }[/math], the n-th dry natural frequency and [math]\displaystyle{ \begin{bmatrix}w_n\end{bmatrix} }[/math] is the corresponding dry natural mode.
Generalized nodal displacements vector can be expressed using calculated "dry" structure natural modes:
to be continued...