Difference between revisions of "Category:Linear Hydroelasticity"
Marko tomic (talk | contribs) |
Marko tomic (talk | contribs) |
||
Line 24: | Line 24: | ||
<center><math>\begin{bmatrix}F\end{bmatrix}</math> is generalized force vector (fluid forces, gravity forces,...).</center> | <center><math>\begin{bmatrix}F\end{bmatrix}</math> is generalized force vector (fluid forces, gravity forces,...).</center> | ||
+ | Left-hand side of the global FEM matrix equation represents "dry" (in vacuuo) structure, while the right-hand side includes fluid forces (and coupling between the surrounding fluid and the structure). | ||
The eigenvalue problem for the "dry" natural vibrations yields: | The eigenvalue problem for the "dry" natural vibrations yields: | ||
Line 53: | Line 54: | ||
<center><math>\begin{bmatrix}k\end{bmatrix} \begin{bmatrix}\xi\end{bmatrix}+\begin{bmatrix}s\end{bmatrix} \begin{bmatrix}\dot\xi\end{bmatrix}+\begin{bmatrix}m\end{bmatrix} \begin{bmatrix}\ddot\xi\end{bmatrix}</math>=<math>\begin{bmatrix}f(t)\end{bmatrix}</math></center> | <center><math>\begin{bmatrix}k\end{bmatrix} \begin{bmatrix}\xi\end{bmatrix}+\begin{bmatrix}s\end{bmatrix} \begin{bmatrix}\dot\xi\end{bmatrix}+\begin{bmatrix}m\end{bmatrix} \begin{bmatrix}\ddot\xi\end{bmatrix}</math>=<math>\begin{bmatrix}f(t)\end{bmatrix}</math></center> | ||
− | + | ||
+ | <center><math>\begin{bmatrix}k\end{bmatrix}=\begin{bmatrix}W^T\end{bmatrix}\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}W\end{bmatrix}</math>is the modal stiffness matrix, | ||
+ | <math>\begin{bmatrix}m\end{bmatrix}=\begin{bmatrix}W^T\end{bmatrix}\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}W\end{bmatrix}</math>is the modal mass matrix.</center> |
Revision as of 00:35, 14 November 2008
Problems in Linear Water-Wave theory in which there is an elastic body.
Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory.
local FE [math]\displaystyle{ \Rightarrow }[/math] global FE model
Dynamic equation of motion in matrix form can be expressed as:
Left-hand side of the global FEM matrix equation represents "dry" (in vacuuo) structure, while the right-hand side includes fluid forces (and coupling between the surrounding fluid and the structure).
The eigenvalue problem for the "dry" natural vibrations yields:
If one assumes trial solution as [math]\displaystyle{ \begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t} }[/math] then the eigenvalue problem reduces to [math]\displaystyle{ \left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix} }[/math]. As a solution of the eigenvalue problem for each natural mode one obtains [math]\displaystyle{ \omega_n }[/math], the n-th dry natural frequency and [math]\displaystyle{ \begin{bmatrix}w_n\end{bmatrix} }[/math], the corresponding dry natural mode.
Generalized nodal displacements vector can be expressed using calculated "dry" structure natural modes: