Difference between revisions of "Category:Linear Hydroelasticity"
Marko tomic (talk | contribs) |
Marko tomic (talk | contribs) |
||
Line 59: | Line 59: | ||
<center><math>\begin{bmatrix}k\end{bmatrix}=\begin{bmatrix}W^T\end{bmatrix}\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}W\end{bmatrix}</math>is the modal stiffness matrix, | <center><math>\begin{bmatrix}k\end{bmatrix}=\begin{bmatrix}W^T\end{bmatrix}\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}W\end{bmatrix}</math>is the modal stiffness matrix, | ||
<math>\begin{bmatrix}m\end{bmatrix}=\begin{bmatrix}W^T\end{bmatrix}\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}W\end{bmatrix}</math>is the modal mass matrix.</center> | <math>\begin{bmatrix}m\end{bmatrix}=\begin{bmatrix}W^T\end{bmatrix}\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}W\end{bmatrix}</math>is the modal mass matrix.</center> | ||
+ | |||
+ | |||
+ | Hydroelastic analysis of the general 3D structure is thus preformed using the modal superposition method. | ||
+ | |||
+ | |||
+ | Let us assume time-harmonic motion. Then the following is valid: | ||
+ | |||
+ | <center><math>\begin{bmatrix}\xi(t)\end{bmatrix}=\begin{bmatrix}\tilde{\xi}(\omega)\end{bmatrix}\cdot e^{i \omega t}, | ||
+ | \; \begin{bmatrix}f(t)\end{bmatrix}=\begin{bmatrix}\tilde{f}(\omega)\end{bmatrix}\cdot e^{i \omega t}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\left ( \begin{bmatrix}k\end{bmatrix}+i\omega\begin{bmatrix}s\end{bmatrix}-\omega^2\begin{bmatrix}m\end{bmatrix} \right ) \begin{bmatrix}\tilde{\xi}\end{bmatrix}=\begin{bmatrix}\tilde{f}\end{bmatrix} |
Revision as of 01:10, 14 November 2008
Problems in Linear Water-Wave theory in which there is an elastic body.
Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory.
local FE [math]\displaystyle{ \Rightarrow }[/math] global FE model
Dynamic equation of motion in matrix form can be expressed as:
Left-hand side of the global FEM matrix equation represents "dry" (in vacuuo) structure, while the right-hand side includes fluid forces (and coupling between the surrounding fluid and the structure).
The eigenvalue problem for the "dry" natural vibrations yields:
If one assumes trial solution as [math]\displaystyle{ \begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t} }[/math] then the eigenvalue problem reduces to [math]\displaystyle{ \left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix} }[/math]. As a solution of the eigenvalue problem for each natural mode one obtains [math]\displaystyle{ \omega_n }[/math], the n-th dry natural frequency and [math]\displaystyle{ \begin{bmatrix}w_n\end{bmatrix} }[/math], the corresponding dry natural mode.
Generalized nodal displacements vector can be expressed using calculated "dry" structure natural modes:
Hydroelastic analysis of the general 3D structure is thus preformed using the modal superposition method.
Let us assume time-harmonic motion. Then the following is valid: