Difference between revisions of "Variable Depth Shallow Water Wave Equation"
Line 8: | Line 8: | ||
We begin with the shallow depth equation | We begin with the shallow depth equation | ||
{{shallow depth one dimension}} | {{shallow depth one dimension}} | ||
+ | |||
+ | == Waves in a finite basin == | ||
+ | |||
+ | We consider the problem of waves in a finite basin. At the edge of the basin the boundary conditions are | ||
+ | <center> | ||
+ | <math>\left.\partial_x \zeta\right|_{x=0} = \left.\partial_x \zeta\right|_{x=1} =0</math> | ||
+ | </center>. | ||
+ | |||
+ | We solve the equations by expanding in the modes for the basin which satisfy | ||
+ | <center><math> | ||
+ | \partial_x \left(h(x) \partial_x \zeta_n \right) = -\lambda_n, | ||
+ | </math></center> | ||
+ | normalised so that | ||
+ | <center><math> | ||
+ | \int_0^1 \zeta_n \zeta_m = \delta_{mn}. | ||
+ | </math></center> | ||
+ | The solution is then given by | ||
+ | <center><math> | ||
+ | \zeta(x,t) = \sum_{n=0}^{\infty} \left(\int_0^1 \zeta_n(x^\prime) \zeta_0 (x^\prime) dx^\prime \right) \zeta_n(x) \cos(\sqrt{\lambda_n} t ) | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | + \sum_{n=1} ^{\infty} \left(\int_0^1 \zeta_n(x^\prime) \partial_t\zeta_0 (x^\prime) dx^\prime \right) \zeta_n(x) \frac{\sin(\sqrt{\lambda_n} t )}{\sqrt{\lambda_n}} | ||
+ | </math></center> | ||
+ | where we have assumed that <math>\lambda_0 = 0</math>. | ||
+ | |||
+ | == Waves in an infinite basin == | ||
We assume that the depth is constant and equal to one outside the region <math>0<x<1</math>. | We assume that the depth is constant and equal to one outside the region <math>0<x<1</math>. | ||
We can therefore write the wave as | We can therefore write the wave as | ||
− | |||
== Solution using Separation of Variables == | == Solution using Separation of Variables == |
Revision as of 01:33, 17 December 2008
Introduction
We consider here the problem of waves reflected by a region of variable depth in an otherwise uniform depth region assuming the equations of Shallow Depth.
Equations
We begin with the shallow depth equation
subject to the initial conditions
where [math]\displaystyle{ \zeta }[/math] is the displacement, [math]\displaystyle{ \rho }[/math] is the string density and [math]\displaystyle{ h(x) }[/math] is the variable depth (note that we are unifying the variable density string and the wave equation in variable depth because the mathematical treatment is identical).
Waves in a finite basin
We consider the problem of waves in a finite basin. At the edge of the basin the boundary conditions are
[math]\displaystyle{ \left.\partial_x \zeta\right|_{x=0} = \left.\partial_x \zeta\right|_{x=1} =0 }[/math]
.
We solve the equations by expanding in the modes for the basin which satisfy
normalised so that
The solution is then given by
where we have assumed that [math]\displaystyle{ \lambda_0 = 0 }[/math].
Waves in an infinite basin
We assume that the depth is constant and equal to one outside the region [math]\displaystyle{ 0\lt x\lt 1 }[/math]. We can therefore write the wave as
Solution using Separation of Variables
Taking a separable solution [math]\displaystyle{ \ w (x,t) = \Tau (t) \hat{w} (x) }[/math] gives the eigenvalue problem
[math]\displaystyle{ \partial_x \left( c(x)^2 \partial_x\hat{w} \right) = \lambda\hat{w} \quad (2) }[/math]
Given boundary conditions [math]\displaystyle{ \hat{w} (0) = a }[/math] and [math]\displaystyle{ \hat{w} (1) = b }[/math] we can take
[math]\displaystyle{ \hat{w} = (b-a)x + a + u \quad (3) }[/math]
With [math]\displaystyle{ u = \sum_{n=1}^{N} a_n \sin (n \pi x) }[/math] a series solution satisfying [math]\displaystyle{ u (0) = u (1) = 0 }[/math]
We wish to solve for [math]\displaystyle{ a_n }[/math] given [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. Equation (2) can be transformed into the Sturm-Liouville problem of minimizing the functional
[math]\displaystyle{ J [u] = \int_{0}^{1} c^2 \left(\frac{d \hat{w}}{d x}\right)^2 + \lambda \hat{w}^2 \,dx }[/math]
which is minimal exactly when [math]\displaystyle{ \partial_{a_n} J = 0 \quad \forall a_n }[/math]
Substituting in [math]\displaystyle{ \hat{w} = (b-a)x + a + \sum_{n=1}^{N} a_n \sin (n \pi x) }[/math] and [math]\displaystyle{ \frac {d \hat{w}}{d x} = (b-a) + \sum_{n=1}^{N} a_n n \pi \cos (n \pi x) }[/math]
gives
[math]\displaystyle{ \partial_{a_n} J = \int_{0}^{1} c^2 \left( n \pi \cos (n \pi x) \left((b-a) + \sum_{m=1}^{N} a_m m \pi \cos (m \pi x) \right) \right) \, dx + \int_{0}^{1} \lambda \left( \sin (n \pi x) \left((b-a)x + a + \sum_{m=1}^{N} a_m \sin (m \pi x) \right) \right) \, dx = 0 \quad (4) }[/math]
Since [math]\displaystyle{ \sin(n \pi x) }[/math] and [math]\displaystyle{ \sin(m \pi x) }[/math] are orthogonal the second integral in (4) can be calculated.
[math]\displaystyle{ \int_{0}^{1} \lambda \left( \sin (n \pi x) \left((b-a)x + a + \sum_{m=1}^{N} a_m \sin (m \pi x) \right) \right) \, dx =\lambda \int_{0}^{1} \left( (b-a)x+a \right) \sin (n \pi x) \, dx + \frac{\lambda a_n}{2} }[/math]
and
[math]\displaystyle{ \int_{0}^{1} \lambda \left( \sin (n \pi x) \left((b-a)x + a + \sum_{m=1}^{N} a_m \sin (m \pi x) \right) \right) \, dx }[/math] [math]\displaystyle{ = \lambda \left((b-a) \int_{0}^{1} x \sin(n \pi x) \, dx + a \int_{0}^{1} \sin(n \pi x) \, dx \right) }[/math] [math]\displaystyle{ = \frac{\lambda (b-a)}{(n \pi)^2} \Big[ \sin(n \pi x) -n \pi x \cos( n \pi x) \Big]_{0}^{1} - \frac{a \lambda}{n \pi} \Big[\cos(n \pi x) \Big]_{0}^{1} }[/math] [math]\displaystyle{ = \frac{\lambda (b-a)}{(n \pi)^2} \left(n \pi (-1)^{n+1} \right) + \frac{a \lambda}{n \pi} \left(1 - (-1)^n \right) }[/math] [math]\displaystyle{ = \frac{\lambda}{n \pi} \left( b (-1)^{n+1}+a \right) }[/math]
So equation (4) can be written as [math]\displaystyle{ \int_{0}^{1} c^2 \left( n \pi \cos (n \pi x) \left((b-a) + \sum_{m=1}^{N} a_m m \pi \cos (m \pi x) \right) \right) \, dx + \frac{\lambda}{n \pi} \left( b (-1)^{n+1}+a \right) + \frac{\lambda a_n}{2}= 0 }[/math]
The remaining integral can be split into two parts and with the sum taken outside the integral we obtain [math]\displaystyle{ \int_{0}^{1} c^2 (b-a) n \pi \cos (n \pi x) + \sum_{m=1}^{N} \left( \int_{0}^{1} c^2 n m \pi^2 \cos(n \pi x) \cos (m \pi x) \, dx \right) a_m + \frac{\lambda}{n \pi} \left( b (-1)^{n+1}+a \right) + \frac{\lambda a_n}{2}= 0 }[/math]
or, on rearranging [math]\displaystyle{ \sum_{m=1}^{N} \left( \int_{0}^{1} c^2 n m \pi^2 \cos(n \pi x) \cos (m \pi x) \, dx \right) a_m+ \frac{\lambda a_n}{2}= -\int_{0}^{1} c^2 (b-a) n \pi \cos (n \pi x) - \frac{\lambda}{n \pi} \left( b (-1)^{n+1}+a \right) }[/math]
Now if we form the vector [math]\displaystyle{ \mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_N \end{pmatrix} }[/math] and recalling that we have the above expression for all n, we can write the above as a matrix multiplication of [math]\displaystyle{ \mathbf{a} }[/math]
[math]\displaystyle{ \mathrm{M} \mathbf{a} = \mathbf{f} }[/math]
with [math]\displaystyle{ \mathrm{M}_{(n,m)} = \int_{0}^{1} c^2 n m \pi^2 \cos(n \pi x) \cos (m \pi x) \, dx + \delta_{nm} \frac{\lambda}{2} \quad \delta_{nm} = \left\{ \begin{matrix} 1 & \mathrm{if} \quad n = m \\ 0 & \mathrm{if} \quad n \neq m \end{matrix} \right. }[/math]
and [math]\displaystyle{ \mathbf{f} = \begin{pmatrix} f_1 \\ \vdots \\ f_N \end{pmatrix} }[/math] with [math]\displaystyle{ f_n = -\int_{0}^{1} c^2 (b-a) n \pi \cos (n \pi x) + \frac{\lambda}{n \pi} \left( b (-1)^n-a \right) }[/math]
So, given a suitable [math]\displaystyle{ c(x) }[/math] and boundary conditions [math]\displaystyle{ \hat{w} (0) = a }[/math] and [math]\displaystyle{ \hat{w} (1) = b }[/math] we have a system of linear equations that can be solved to give the coefficients [math]\displaystyle{ a_n }[/math] which in turn define the function [math]\displaystyle{ \hat{w} }[/math].