Difference between revisions of "Standard Notation"
From WikiWaves
Jump to navigationJump to searchLine 12: | Line 12: | ||
* Boundary of fluid region <math>\partial \Omega</math> | * Boundary of fluid region <math>\partial \Omega</math> | ||
* Displacement of the surface <math>\zeta</math> | * Displacement of the surface <math>\zeta</math> | ||
− | * | + | * <math> T = \frac{2\pi}{\omega}</math> Wave Period |
− | * | + | * <math> \lambda = \frac{2\pi}{k} </math> Wave Length |
* <math> C= \frac{\omega}{k} </math> Wave Phase Velocity | * <math> C= \frac{\omega}{k} </math> Wave Phase Velocity | ||
* <math>A</math> is the wave amplitude | * <math>A</math> is the wave amplitude |
Revision as of 06:08, 18 February 2009
A list of standard notation
- [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] in the horizontal plane with [math]\displaystyle{ z }[/math] pointing vertically upward and the free surface at [math]\displaystyle{ z=0 }[/math]
- Water depth [math]\displaystyle{ h }[/math] with the bottom at [math]\displaystyle{ z=-h }[/math]
- Time [math]\displaystyle{ t }[/math]
- [math]\displaystyle{ \mathbf{x} }[/math] Fixed Eulerian Vector
- [math]\displaystyle{ \mathbf{v} }[/math] Flow Velocity Vector at [math]\displaystyle{ \mathbf{x} }[/math]
- Velocity potential [math]\displaystyle{ \phi\, }[/math] (in frequecy domain) or [math]\displaystyle{ \Phi\, }[/math] in time domain
- Angular frequency [math]\displaystyle{ \omega }[/math]
- Time dependence in frequency domain [math]\displaystyle{ e^{i\omega t} }[/math]
- Fluid region [math]\displaystyle{ \Omega\, }[/math]
- Boundary of fluid region [math]\displaystyle{ \partial \Omega }[/math]
- Displacement of the surface [math]\displaystyle{ \zeta }[/math]
- [math]\displaystyle{ T = \frac{2\pi}{\omega} }[/math] Wave Period
- [math]\displaystyle{ \lambda = \frac{2\pi}{k} }[/math] Wave Length
- [math]\displaystyle{ C= \frac{\omega}{k} }[/math] Wave Phase Velocity
- [math]\displaystyle{ A }[/math] is the wave amplitude
- wave frequency is [math]\displaystyle{ \omega }[/math]
- wave number [math]\displaystyle{ k }[/math]