Difference between revisions of "Template:Solution for a uniform beam in eigenfunctions"

From WikiWaves
Jump to navigationJump to search
Line 4: Line 4:
 
We can express the deflection as the series
 
We can express the deflection as the series
 
<center><math>  \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(\lambda_n t) +   
 
<center><math>  \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(\lambda_n t) +   
\sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(\lambda_n t)}{\lambda_n} \right) </math></center>
+
\sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(\lambda_n t)}{\lambda_n} </math></center>
 
where <math>X_n</math> are the [[Eigenfunctions for a Uniform Free Beam]] and <math>\lambda_n</math>
 
where <math>X_n</math> are the [[Eigenfunctions for a Uniform Free Beam]] and <math>\lambda_n</math>
  

Revision as of 09:51, 7 April 2009

If the beam is uniform the equations can be written

[math]\displaystyle{ D \frac{\partial^{4}\zeta}{\partial x^{4}}+\rho_i h \frac{\partial^{2}\zeta}{\partial t^{2}}=0 }[/math]

We can express the deflection as the series

[math]\displaystyle{ \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(\lambda_n t) + \sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(\lambda_n t)}{\lambda_n} }[/math]

where [math]\displaystyle{ X_n }[/math] are the Eigenfunctions for a Uniform Free Beam and [math]\displaystyle{ \lambda_n }[/math]

Then [math]\displaystyle{ A_n \,\! }[/math] and [math]\displaystyle{ B_n \,\! }[/math] can be found using orthogonality properties:

[math]\displaystyle{ A_n=\frac{\int_{-L}^{L}f(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} \,\! }[/math]
[math]\displaystyle{ B_n=\frac{\int_{-L}^{L}g(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} }[/math]

Note that we cannot give the plate an initial velocity that contains a rigid body motions which is why the sum starts at [math]\displaystyle{ n=2 }[/math] for time derivative.