Free-Surface Green Function
Introduction
Equations for the Green function
The Free-Surface Green function is a function which satisfies the following equation (in Finite Depth) [math]\displaystyle{ \mathbf{x}=(x,y,z) }[/math] and [math]\displaystyle{ \mathbf{\xi}=(a,b,c) }[/math]
[math]\displaystyle{ \nabla_{\mathbf{x}}^{2}G(\mathbf{x},\mathbf{\xi})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty\lt z\lt 0 }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z}=0, \, z=h, }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z} = k_{\infty}\phi,\,z\in\Gamma_s, }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z} = L\phi, \, z\in\Gamma_w. }[/math]
where [math]\displaystyle{ k_{\infty} }[/math] is the wavenumber in Infinite Depth which is given by [math]\displaystyle{ k_{\infty}=\omega^2/g }[/math] where [math]\displaystyle{ g }[/math] is gravity. We also require a condition as [math]\displaystyle{ \mathbf{x} \to \infty }[/math] which is the Sommerfeld Radiation Condition
Two Dimensional Representations
Many expressions for the Green function have been given. It can be written as
[math]\displaystyle{ -\sum_{n=0}^\infty \frac{ie^{i k_n}}{\tan(k_m H) + H k_m\sec(k_m)^2} }[/math]
Three Dimensional Representations
Let [math]\displaystyle{ (r,\theta) }[/math] be spherical coordinates such that
[math]\displaystyle{ x - a = r \cos \theta,\, }[/math]
[math]\displaystyle{ y - b = r \sin \theta,\, }[/math]
and let [math]\displaystyle{ R_0 }[/math] and [math]\displaystyle{ R_1 }[/math] denote the distance from the source point [math]\displaystyle{ \mathbf{\xi} = (a,b,c) }[/math] and the distance from the mirror source point [math]\displaystyle{ \bar{\mathbf{\xi}} = (a,b,-c) }[/math] respectively, [math]\displaystyle{ R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2 }[/math] and [math]\displaystyle{ R_1^2 = (x-a)^2 + (y-b)^2 + (z+c)^2 }[/math].
Finite Depth
The most important representation of the finite depth free surface Green function is the eigenfunction expansion given by John 1950. He wrote the Green function in the following form
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i}{2} \, \frac{\alpha^2-k^2}{(\alpha^2-k^2)H-\alpha}\, \cosh k(z+H)\, \cosh k(c+H) \, H_0^{(1)}(k r) + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{k_m^2+\alpha^2}{(k_m^2+\alpha^2)H-\alpha}\, \cos k_m(z+H)\, \cos k_m(c+H) \, K_0(k_m r), }[/math]
where [math]\displaystyle{ H^{(1)}_0 }[/math] and [math]\displaystyle{ K_0 }[/math] denote the Hankel function of the first kind and the modified Bessel function of the second kind, both of order zero as defined in Abramowitz and Stegun 1964, [math]\displaystyle{ k }[/math] is the positive real solution to the Dispersion Relation for a Free Surface and [math]\displaystyle{ k_m }[/math] are the imaginary parts of the solutions with positive imaginary part. This way of writing the equation was primarily to avoid complex values for the Bessel functions, however most computer packages will caculate Bessel functions for complex arguement so it makes more sense to write the Green function in the following form
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{1}{\pi} \sum_{m=0}^{\infty} \frac{k_m^2+\alpha^2}{(k_m^2+\alpha^2)H-\alpha}\, \cos k_m(z+H)\, \cos k_m(c+H) \, K_0(k_m r), }[/math]
where [math]\displaystyle{ k_m }[/math] are as before except [math]\displaystyle{ k_0=ik }[/math].
Infinite Depth
In three dimensions and infinite depth the Green function [math]\displaystyle{ G }[/math], for [math]\displaystyle{ r\gt 0 }[/math], was given by Havelock 1955 as
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{1}{\pi^2} \int\limits_{0}^{\infty} \frac{\alpha}{\eta^2 + \alpha^2} \big( \alpha \cos \eta (z+c) - \eta \sin \eta (z+c) \big) K_0(\eta r) d\eta. }[/math]
It should be noted that this Green function can also be written in the following closely related form,
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{2 \pi^2} \int\limits_{0}^{\infty} \frac{(\eta^2 - \alpha^2) \cos \eta (z+c) + 2 \eta \alpha \sin \eta (z+c)}{\eta^2 + \alpha^2} K_0(\eta r) d\eta }[/math]
Linton and McIver 2001. An equivalent representation is due to Kim 1965 for [math]\displaystyle{ r\gt 0 }[/math], although implicitly given in the work of Havelock 1955, and is given by
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{\alpha}{4} e^{\alpha (z+c)} \Big(\mathbf{H}_0(\alpha r) + Y_0(\alpha r) - 2i J_0 (\alpha r) + \frac{2}{\pi} \int\limits_{z+c}^0 \frac{e^{-\alpha \eta}}{\sqrt{r^2 + \eta^2}} d\eta \Big), }[/math]
where [math]\displaystyle{ J_0 }[/math] and [math]\displaystyle{ Y_0 }[/math] are the Bessel functions of order zero of the first and second kind and [math]\displaystyle{ \mathbf{H}_0 }[/math] is the Struve function of order zero.
The expression due to Peter and Meylan 2004 is
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} H_0^{(1)}(\alpha r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \Big) \frac{\eta^2}{\eta^2+\alpha^2} \Big( \cos \eta c + \frac{\alpha}{\eta} \sin \eta c \Big) K_0(\eta r) d\eta. }[/math]