Conservation Laws and Boundary Conditions
The Ocean Environment
Non Linear Free-surface Condition
[math]\displaystyle{ \begin{matrix} &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]
[math]\displaystyle{ \bullet }[/math] Assume ideal fluid (No shear stresses) and irrotational flow:
Let:
Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.
[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
[math]\displaystyle{ \bullet }[/math] Conservation of mass:
or
[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.
[math]\displaystyle{ \bullet }[/math] Vector Identity:
in irrotational flow: [math]\displaystyle{ \nabla \times \vec V = 0 }[/math], thus Euler's equations become:
Upon substitution:
where [math]\displaystyle{ \mathbb{C} = \mbox{constant} }[/math]
Bernovlli's equation follows:
or
The value of the constant [math]\displaystyle{ \mathbb{C} }[/math] is immaterial as will be shown below.
[math]\displaystyle{ \bullet }[/math] Angular momentum conservation principle contained in:
[math]\displaystyle{ \nabla \times \vec V = 0 }[/math]
-- If particles are modelled as spheres, above equation implies no angular velocity at all times.
Derivation of Nonlinear Free-surface Condition
[math]\displaystyle{ \bullet }[/math] Method I: on [math]\displaystyle{ Z=\zeta; \ P=P_a \equiv \mbox{Atmospheric Pressure} }[/math]
From Bernoulli:
[math]\displaystyle{ \longrightarrow \frac{P_a}{\rho}=-\frac{\partial\Phi}{\partial t}-\frac{1}{2}\nabla\Phi\cdot\nabla\Phi-g\zeta+\mathbb{C} \qquad \mbox{on} \ Z=\zeta(X,Y,t) }[/math]
On [math]\displaystyle{ Z=\zeta }[/math] The mathematical function
is always zero when tracing a fluid particle on the free surface. So the substantial or total derivative of [math]\displaystyle{ \tilde{f} }[/math] must vanish, thus