Wavemaker Theory
A paddle with draft [math]\displaystyle{ D\, }[/math] is undergoing small amplitude horizontal oscillations with displacement
Where [math]\displaystyle{ \Pi\, }[/math] is assumed known and real. This excitation creates plane progressive waves with amplitude [math]\displaystyle{ A \, }[/math] down the tank. The principal objective of wavemaker theory is to determine [math]\displaystyle{ A \, }[/math] as a function of [math]\displaystyle{ \omega, \Pi \, }[/math] and [math]\displaystyle{ H \, }[/math].
Other types of wavemaker modes may be treated similarly.
In general, the wavemaker displacement at [math]\displaystyle{ X=0\, }[/math] may be written in the form
Where [math]\displaystyle{ \Pi(Z) \, }[/math] is a known function of [math]\displaystyle{ Z \, }[/math].
Let the total velocity potential be:
where
The first term is a velocity potential that represents a plane progressive regular wave down the tank with amplitude [math]\displaystyle{ A \, }[/math], yet unknown. Thus:
with:
The second component potential [math]\displaystyle{ \psi\, }[/math] is by definition a decaying disturbance as [math]\displaystyle{ X \to \infty \, }[/math] and otherwise satisfies the following boundary value problem:
The condition on the wavemaker [math]\displaystyle{ (X=0) \, }[/math] is yet to be enforced.
Note that unlike [math]\displaystyle{ \phi_\omega, \psi \, }[/math] is not representing a propagating wave down the tank so it is called a non-wavelike mode. Such modes do exist as will be shown below. On the wavemaker [math]\displaystyle{ (X=0) \, }[/math] the horizontal velocity due to [math]\displaystyle{ \phi_\omega\, }[/math] and that due to [math]\displaystyle{ \psi\, }[/math] must sum to the forcing velocity due to [math]\displaystyle{ \xi(t) \, }[/math].
Noting that [math]\displaystyle{ \phi_\omega \sim e^{-iKX} \cosh K(Z+H) \, }[/math] we will try [math]\displaystyle{ \phi \sim e^{-\lambda x} \cos \lambda (Z+H) \, }[/math]. Its conjugate which satisfies the condition of vanishing value as [math]\displaystyle{ X \to \infty }[/math] for [math]\displaystyle{ \lambda \gt 0 \, }[/math].
Laplace : [math]\displaystyle{ \psi_XX + \psi_ZZ = 0, \, }[/math] verify for all [math]\displaystyle{ \lambda\, }[/math].
FS condition : [math]\displaystyle{ \psi_Z - \frac{\omega^2}{g} \psi = 0 \Longrightarrow }[/math]
Seafloor condition : [math]\displaystyle{ \psi_Z = 0, Z=-H \, }[/math]