KdV Cnoidal Wave Solutions

From WikiWaves
Revision as of 04:34, 14 October 2008 by Wheo001 (talk | contribs) (The KdV equation has two qualitatively different types of permanent form travelling wave solution. These are referred to as cnoidal waves and solitary waves.)
Jump to navigationJump to search

Travelling Wave Solutions of the KdV Equation

KdV equation in [math]\displaystyle{ (z,\tau) }[/math] space

Assume we have wave travelling with speed [math]\displaystyle{ V_0 }[/math] without change of form,

[math]\displaystyle{ H(z,\tau)=H(z-V_0\tau) }[/math]

and substitute into KdV equation then we obtain

[math]\displaystyle{ -2V_oH_\xi+3HH_\xi+\frac{1}{3}H_{\xi\xi\xi}=0 }[/math]

where [math]\displaystyle{ \xi=z-V_0\tau }[/math] is the travelling wave coordinate.


We integrate this equation twice with respect to [math]\displaystyle{ \xi }[/math] to give

[math]\displaystyle{ \frac{1}{6}H_\xi^2=V_oH^2-\frac{1}{2}H^3+D_1H+D_2=f(H,V_0,D_1,D_2) }[/math]

where D_1 and D_2 are constants of integration.

Standardization of KdV equation

We define [math]\displaystyle{ f(H)= V_oH^2-\frac{1}{2}H^3+D_1H+D2 }[/math], so [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math]

It turns out that we require 3 real roots to obtain periodic solutions. Let roots be [math]\displaystyle{ H_1 \leq H_2 \leq H_3 }[/math].


We can imagine the graph of cubic function which has 3 real roots and we can now write a function

[math]\displaystyle{ f(H)= \frac{-1}{2}(H-H_1)(H-H_2)(H-H_3) }[/math]


From the equation [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math], we require [math]\displaystyle{ f(H)\gt 0. }[/math]

We are only interested in solution for [math]\displaystyle{ H_2 \lt H \lt H_3 }[/math] and we need [math]\displaystyle{ H_2 \lt H_3 }[/math].

and now solve equation in terms of the roots [math]\displaystyle{ H_i, }[/math]

We define [math]\displaystyle{ X=\frac{H}{H_3} }[/math], and obtain

[math]\displaystyle{ X_\xi^2=3H_3(X-X_1)(X-X_2)(1-X) }[/math]

where [math]\displaystyle{ X_i=\frac{H_i}{H} }[/math]

crest to be at [math]\displaystyle{ \xi=0 and X(0)=0 }[/math]

and a further variable Y via

[math]\displaystyle{ X=1+(X_2-1)sin^2(Y) }[/math]


[math]\displaystyle{ Y_\xi^2=\frac{3}{4}H_3(1-X_1)\left\{ 1-\frac{(1-X_2)}{(1-X_1)}sin(Y)^2 \right\} ...(1) }[/math]

so [math]\displaystyle{ Y(0)=0. }[/math]

and

[math]\displaystyle{ \frac{dY}{d\xi}=\sqrt{l(1-k^2sin^2(Y))}, }[/math]

which is separable.



In order to get this into a completely standard form we define

[math]\displaystyle{ k^2=\frac{1-X_2}{1-X_1}, l=\frac{3}{4}H_3(1-X_1) ...(2) }[/math]

Clearly, [math]\displaystyle{ 0 \leq k^2 \leq 1 }[/math] and [math]\displaystyle{ l\gt 0. }[/math]


Solution of the KdV equation

A simple quadrature of equation (1) subject to the condition (2) the gives us

[math]\displaystyle{ \int_{0}^\bar{Y} \frac{dS}{\sqrt{l(1-k^2sin^2(Y))}} = \int_{0}^\bar{Y} dS }[/math]

Jacobi elliptic function [math]\displaystyle{ y= sn(x,k) }[/math] can be written in the form


[math]\displaystyle{ x= \int_{0}^y \frac{dt}{\sqrt{1-t^2}\sqrt{1-k^2t^2}} , for 0 \lt k^2 \lt 1 }[/math]

or equivalently

[math]\displaystyle{ x=\int_{0}^{sin^{-1}y} \frac{dS}{\sqrt{1-k^2sin^2(s)}} }[/math]

Now we can write Y with fixed values of x,k as

[math]\displaystyle{ \bar{Y}=sin^{-1}(sn(\sqrt{l}\int_0^{\bar{Y}} d\xi,k)), }[/math]
[math]\displaystyle{ sin(Y)=sn(\sqrt{l}\xi;k), }[/math]

and hence

[math]\displaystyle{ X=1+(X_2-1)sn^2(\sqrt{l}\xi;k) }[/math]

[math]\displaystyle{ cn(x;k) }[/math] is another Jacobi elliptic function with [math]\displaystyle{ cn^2+sn^2=1 }[/math], and waves are called "cnoidal waves".

Using the result [math]\displaystyle{ cn^2+sn^2=1 }[/math], our final result can be expressed in the form

[math]\displaystyle{ H=H_2+(H_3-H_2)cn^2\left\{ \left[ \frac{3}{4}(H_3-H_1) \right]^{\frac{1}{2}}\xi;k \right\} }[/math]