KdV Cnoidal Wave Solutions
Travelling Wave Solutions of the KdV Equation
KdV equation in [math]\displaystyle{ (z,\tau) }[/math] space
Assume we have wave travelling with speed [math]\displaystyle{ V_0 }[/math] without change of form,
and substitute into KdV equation then we obtain
where [math]\displaystyle{ \xi=z-V_0\tau }[/math] is the travelling wave coordinate.
We integrate this equation twice with respect to [math]\displaystyle{ \xi }[/math] to give
where D_1 and D_2 are constants of integration.
Standardization of KdV equation
We define [math]\displaystyle{ f(H)= V_oH^2-\frac{1}{2}H^3+D_1H+D2 }[/math], so [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math]
It turns out that we require 3 real roots to obtain periodic solutions. Let roots be [math]\displaystyle{ H_1 \leq H_2 \leq H_3 }[/math].
We can imagine the graph of cubic function which has 3 real roots and we can now write a function
From the equation [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math], we require [math]\displaystyle{ f(H)\gt 0. }[/math]
We are only interested in solution for [math]\displaystyle{ H_2 \lt H \lt H_3 }[/math] and we need [math]\displaystyle{ H_2 \lt H_3 }[/math].
and now solve equation in terms of the roots [math]\displaystyle{ H_i, }[/math]
We define [math]\displaystyle{ X=\frac{H}{H_3} }[/math], and obtain
where [math]\displaystyle{ X_i=\frac{H_i}{H} }[/math]
crest to be at [math]\displaystyle{ \xi=0 and X(0)=0 }[/math]
and a further variable Y via
so [math]\displaystyle{ Y(0)=0. }[/math]
and
which is separable.
In order to get this into a completely standard form we define
Clearly, [math]\displaystyle{ 0 \leq k^2 \leq 1 }[/math] and [math]\displaystyle{ l\gt 0. }[/math]
Solution of the KdV equation
A simple quadrature of equation (1) subject to the condition (2) the gives us
Jacobi elliptic function [math]\displaystyle{ y= sn(x,k) }[/math] can be written in the form
or equivalently
Now we can write Y with fixed values of x,k as
and hence
[math]\displaystyle{ cn(x;k) }[/math] is another Jacobi elliptic function with [math]\displaystyle{ cn^2+sn^2=1 }[/math], and waves are called "cnoidal waves".
Using the result [math]\displaystyle{ cn^2+sn^2=1 }[/math], our final result can be expressed in the form