Sommerfeld Radiation Condition
This is a condition for the Frequency Domain Problem that the scattered wave is only outgoing at infinity. It depends on the convention regarding whether the time dependence is [math]\displaystyle{ \exp (i\omega t)\, }[/math] or [math]\displaystyle{ \exp (-i\omega t)\, }[/math]. Assuming the former (which is the standard convention on this wiki). In two dimensions the condition is
[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}+\mathrm{i}k\right) (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]
where [math]\displaystyle{ \phi^{\mathrm{{In}}} }[/math] is the incident potential and [math]\displaystyle{ k }[/math] is the wave number.
In three dimensions the condition is
[math]\displaystyle{ r^{1/2}\left( \frac{\partial}{\partial r}+\mathrm{i}k\right) (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}r\rightarrow\infty\mathrm{.} }[/math]
If the time dependence is assumed to be [math]\displaystyle{ \exp (-i\omega t)\, }[/math], then we have in two dimensions
[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}-\mathrm{i}k\right) (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]
and in three dimensions
[math]\displaystyle{ r^{1/2}\left( \frac{\partial}{\partial r}-\mathrm{i}k\right) (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}r\rightarrow\infty\mathrm{.} }[/math]