Wave Forces on a Body
From WikiWaves
Wave Forces on a Body
[math]\displaystyle{ D_F = \frac{F}{\rho g A \ell^2} = f \left( \frac{}{} \right. }[/math] | [math]\displaystyle{ \underbrace{\frac{A}{\lambda}} \, }[/math], | [math]\displaystyle{ \underbrace{\frac{\ell}{\lambda}} \, }[/math], | [math]\displaystyle{ R_e \, }[/math], | [math]\displaystyle{ \frac{h}{\lambda} \, }[/math], | roughness, | [math]\displaystyle{ \ldots \left. \frac{}{} \right) \, }[/math] |
Wave | Diffraction | |||||
steepness | parameter |
Type of Forces
1. Viscous forces Form drag, viscous drag [math]\displaystyle{ = f ( R_e, K_c, \, }[/math] roughness, [math]\displaystyle{ \ldots ) }[/math].
- Form drag [math]\displaystyle{ ( C_D ) \, }[/math]
Associated primarily with flow separation -normal stresses.
- Friction drag [math]\displaystyle{ ( C_F ) \, }[/math]
Associated with skin friction [math]\displaystyle{ \tau_w, \ i.e., \ \vec{F} \sim \iint_{\mbox{body (wetted surface)}} \tau_w dS \, }[/math].
2. Inertial forces Froude-Krylov forces, diffraction forces, radiation forces.
Forces arising from potential flow wave theory,
For linear theory, the velocity potential [math]\displaystyle{ \phi \, }[/math] and the pressure [math]\displaystyle{ p \, }[/math] can be decomposed to
[math]\displaystyle{ \phi = \, }[/math] | [math]\displaystyle{ \underbrace{\phi_I} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \underbrace{\phi_D} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \underbrace{\phi_R} \, }[/math] | ||
Incident wave | Diffracted wave | Radiated wave | |||||
potential [math]\displaystyle{ (a) \, }[/math] | potential [math]\displaystyle{ (b.1) \, }[/math] | potential [math]\displaystyle{ (b.2) \, }[/math] | |||||
[math]\displaystyle{ - \frac{p}{\rho} = \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_I}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_D}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_R}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ g y \, }[/math] |
(a) Incident wave potential