Template:Fixed body finite depth equations in two dimensions
The Standard Linear Wave Scattering Problem in Finite Depth for a fixed body in two dimensions is
The equation is subject to some radiation conditions at infinity. We usually assume that there is an incident wave [math]\displaystyle{ \phi^{\mathrm{{In}}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction
where [math]\displaystyle{ A }[/math] is the wave amplitude and [math]\displaystyle{ k_0 }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface. We also have to apply the Sommerfeld Radiation Condition as [math]\displaystyle{ \left|\mathbf{r}\right|\rightarrow \infty }[/math].
In two-dimensions the condition is
where [math]\displaystyle{ \phi^{\mathrm{{In}}} }[/math] is the incident potential and [math]\displaystyle{ k }[/math] is the wave number.