Removing the Depth Dependence
We are considering the Frequency Domain Problem for linear wave waves. The Standard Linear Wave Scattering Problem in Finite Depth for a fixed body is
(note that the last expression can be obtained from combining the expressions:
where [math]\displaystyle{ \alpha = \omega^2/g \, }[/math]) The body boundary condition for a rigid body is just
The equation is subject to some radiation conditions at infinity. We assume the following. [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,
where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and
In two-dimensions the Sommerfeld Radiation Condition is
where [math]\displaystyle{ \phi^{\mathrm{{I}}} }[/math] is the incident potential.
If we have a problem in which all the scatterers are of constant cross sections so that
[math]\displaystyle{ \partial\Omega = \partial\hat{\Omega} \times z\in[-h,0] }[/math]
where [math]\displaystyle{ \partial\hat{\Omega} }[/math] is a function only of [math]\displaystyle{ x,y }[/math] i.e. the boundary of the scattering bodies is uniform with respect to depth. Then we can remove the depth dependence by assuming that the dependence on depth is given by
[math]\displaystyle{ \Phi(x,y,z) = \frac{\cosh \big( k (z+h) \big)}{\cosh(k h)} \phi(x,y) }[/math]
where [math]\displaystyle{ k }[/math] is the positive root of the Dispersion Relation for a Free Surface. Since [math]\displaystyle{ \Phi }[/math] satisfies Laplace's Equation, then [math]\displaystyle{ \phi }[/math] satisfies Helmholtz's Equation
[math]\displaystyle{ \nabla^2 \phi - k^2 \phi = 0 }[/math]
in the region not occupied by the scatterers.