Template:Separation of variables for the r and theta coordinates
Separation of Variable for the [math]\displaystyle{ r }[/math] and [math]\displaystyle{ \theta }[/math] coordinates
For the solution of
[math]\displaystyle{ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} = k_m^2 Y(r,\theta), }[/math]
we use the separation
[math]\displaystyle{ Y(r,\theta) =: R(r) \Theta(\theta). }[/math]
Substituting this into Laplace's equation yields
[math]\displaystyle{ \frac{r^2}{R(r)} \left[ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d}r} \right) - k_m^2 R(r) \right] = - \frac{1}{\Theta (\theta)} \frac{\mathrm{d}^2 \Theta}{\mathrm{d} \theta^2} = \eta^2, }[/math]
where the separation constant [math]\displaystyle{ \eta }[/math] must be an integer, say [math]\displaystyle{ \nu }[/math], in order for the potential to be continuous. [math]\displaystyle{ \Theta (\theta) }[/math] can therefore be expressed as
[math]\displaystyle{ \Theta (\theta) = C \, \mathrm{e}^{\mathrm{i} \nu \theta}, \quad \nu \in \mathbb{Z}. }[/math]
We also obtain the following expression
[math]\displaystyle{ r \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d} r} \right) - (\nu^2 + k_m^2 r^2) R(r) = 0, \quad \nu \in \mathbb{Z}. }[/math]
Substituting [math]\displaystyle{ \tilde{r}:=k_m r }[/math] and writing [math]\displaystyle{ \tilde{R} (\tilde{r}) := R(\tilde{r}/k_m) = R(r) }[/math], this can be rewritten as
[math]\displaystyle{ \tilde{r}^2 \frac{\mathrm{d}^2 \tilde{R}}{\mathrm{d} \tilde{r}^2} + \tilde{r} \frac{\mathrm{d} \tilde{R}}{\mathrm{d} \tilde{r}} - (\nu^2 + \tilde{r}^2)\, \tilde{R} = 0, \quad \nu \in \mathbb{Z}, }[/math]
which is the modified version of Bessel's equation. Substituting back, the general solution is given by
[math]\displaystyle{ R(r) = D_\nu \, I_\nu(k_m r) + E_\nu \, K_\nu(k_m r),\ \nu \in \mathbb{Z}, }[/math]
where [math]\displaystyle{ I_\nu }[/math] and [math]\displaystyle{ K_\nu }[/math] are the modified Bessel functions of the first and second kind, respectively, of order [math]\displaystyle{ \nu }[/math].
Note that [math]\displaystyle{ K_\nu (\mathrm{i} x) = \pi / 2\,\, \mathrm{i}^{\nu+1} H_\nu^{(2)}(x) }[/math] with [math]\displaystyle{ H_\nu^{(2)} }[/math] denoting the Hankel function of the second kind of order [math]\displaystyle{ \nu }[/math]. Also, [math]\displaystyle{ I_\nu }[/math] does not satisfy the Sommerfeld Radiation Condition since it becomes unbounded for increasing real argument. These solution represents incoming waves.