Nonlinear Shallow Water Waves
From WikiWaves
Jump to navigationJump to searchIntroduction
We want to consider
[math]\displaystyle{ \frac{D \rho}{D t} (\vec{x} ,t) + \rho(\vec{x} ,t)\nabla \cdot u(\vec{x} ,t) = 0, x \in \Omega }[/math]
Since water is incompressible i.e. [math]\displaystyle{ \frac{D \rho}{D t} = 0 }[/math] and then [math]\displaystyle{ \nabla \cdot \vec{u} = 0 }[/math] i.e. the divergance of the velocity field is zero.
Conservation of momentum reads as follows
[math]\displaystyle{ \frac{D \vec{u}}{D t} (\vec{x} ,t) = \nabla p + g(0,-1) }[/math]