Template:Energy contour and preliminaries

From WikiWaves
Revision as of 08:59, 11 March 2009 by Meylan (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Based on the method used in Evans and Davies 1968, a check can be made to ensure the solutions energy balance. The energy balance equation is derived by applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate. The domain of integration is shown in the figure on the right. We assume that the angle is sufficiently small that we do not get total reflection.

A diagram depicting the area [math]\displaystyle{ \Omega }[/math] which is bounded by the rectangle [math]\displaystyle{ \partial\Omega }[/math]. The rectangle [math]\displaystyle{ \partial\Omega }[/math] is bounded by [math]\displaystyle{ -h\leq z \leq0 }[/math] and [math]\displaystyle{ -\infty\leq x \leq \infty }[/math]

Applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate [math]\displaystyle{ \phi^* }[/math] gives

[math]\displaystyle{ { \iint_\Omega\left(\phi^*\nabla^2\phi - \phi\nabla^2\phi^* \right)\mathrm{d}x\mathrm{d}z = \int_{\partial\Omega}\left(\phi^*\frac{\partial\phi}{\partial n} - \phi\frac{\partial\phi^*}{\partial n} \right)\mathrm{d}l }, }[/math]

where [math]\displaystyle{ n }[/math] denotes the outward plane normal to the boundary and [math]\displaystyle{ l }[/math] denotes the plane parallel to the boundary. As [math]\displaystyle{ \phi }[/math] and [math]\displaystyle{ \phi^* }[/math] satisfy the Laplace's equation, the left hand side of the Green theorem equation vanishes so that it reduces to

[math]\displaystyle{ \Im\int_\mathcal{S}\phi^*\frac{\partial\phi}{\partial n} \mathrm{d}l = 0, }[/math]