Template:Equations for fixed bodies in the time domain
Equations for fixed bodies in the time domain
We consider a two-dimensional fluid domain of constant depth, which contains a finite number of fixed bodies of arbitrary geometry. We denote the fluid domain by [math]\displaystyle{ \Omega }[/math], the boundary of the fluid domain which touches the fixed bodies by [math]\displaystyle{ \partial\Omega }[/math], and the free surface by [math]\displaystyle{ F. }[/math] The [math]\displaystyle{ x }[/math] and [math]\displaystyle{ z }[/math] coordinates are such that [math]\displaystyle{ x }[/math] is pointing in the horizontal direction and [math]\displaystyle{ z }[/math] is pointing in the vertical upwards direction (we denote [math]\displaystyle{ \mathbf{x}=\left( x,z\right) ). }[/math] The free surface is at [math]\displaystyle{ z=0 }[/math] and the sea floor is at [math]\displaystyle{ z=-h }[/math] (the theory would be almost identical if the sea floor depth varied within some finite region and was at [math]\displaystyle{ z=-h }[/math] outside this region). The equations of motion in the time domain are
where [math]\displaystyle{ \Phi }[/math] is the velocity potential for the fluid. At the free surface we have the kinematic condition
and the dynamic condition (the linearized Bernoulli equation)
where [math]\displaystyle{ \zeta }[/math] is the free-surface elevation. Equations \eqref{laplace_time} to \eqref{dynamic_time} are in non-dimensional form (so that the fluid density and gravity are both unity). They are also subject to initial conditions
Figure~4 is a schematic diagram of the problem.
\begin{figure} \begin{center} \begin{pspicture}(0,0)(8,6)
\psline[linewidth=2pt](0,1)(7.5,1) \psline[linewidth=2pt](0,5)(7.5,5) \rput[l](6,3){\Large[math]\displaystyle{ \Delta\Phi = 0 }[/math]} \rput[1](6.5,5.3){[math]\displaystyle{ \partial_t \zeta = \partial_n\Phi }[/math]} \rput[l](0,5.3){[math]\displaystyle{ \partial_t \Phi = - \zeta }[/math]} \rput[l](5,1.5){[math]\displaystyle{ \partial_n \Phi =0 }[/math]} \rput[l](3.35,2.5){[math]\displaystyle{ \partial_n \Phi =0 }[/math]} \rput[l](2,4){[math]\displaystyle{ \partial_n \Phi =0 }[/math]} \rput[l](4.5,4){[math]\displaystyle{ \partial\Omega }[/math]} \rput[l](2,1.5){[math]\displaystyle{ \partial\Omega }[/math]} \rput[l](1,3){\Large [math]\displaystyle{ \Omega }[/math]} \rput[l](7.7,5.1){[math]\displaystyle{ z=0 }[/math]} \rput[l](7.7,1.1){[math]\displaystyle{ z=-h }[/math]} \pscurve[linewidth=2pt, fillstyle=solid, fillcolor=lightgray,
showpoints=false](5,5)(4,4)(2,5)
\psccurve[linewidth=2pt, fillstyle=solid, fillcolor=lightgray,
showpoints=false](3,3)(2,2)(3,2)
\end{pspicture} \end{center} \caption{Schematic diagram showing the time-dependent equations} (4) \end{figure}