Difference between revisions of "Category:Linear Hydroelasticity"

From WikiWaves
Jump to navigationJump to search
Line 22: Line 22:
 
<center><math>\begin{bmatrix}M\end{bmatrix}</math> is structural mass matrix,</center>
 
<center><math>\begin{bmatrix}M\end{bmatrix}</math> is structural mass matrix,</center>
 
<center><math>\begin{bmatrix}D\end{bmatrix}</math> is generalized nodal displacements vector,</center>
 
<center><math>\begin{bmatrix}D\end{bmatrix}</math> is generalized nodal displacements vector,</center>
<center><math>\begin{bmatrix}F\end{bmatrix}</math> is loading vector.</center>
+
<center><math>\begin{bmatrix}F\end{bmatrix}</math> is generalized force vector.</center>
  
  
Line 30: Line 30:
  
  
If one assumes trial solution as <math>\begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t}</math> then the eigenvalue problem reduces to <math>\left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix}</math>, where <math>\omega</math> is the dry natural frequency and <math>\begin{bmatrix}w\end{bmatrix}</math> is the dry natural vector.
+
If one assumes trial solution as <math>\begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t}</math> then the eigenvalue problem reduces to <math>\left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix}</math>, where <math>\omega_n</math> is the n-th dry natural frequency and <math>\begin{bmatrix}w_n\end{bmatrix}</math> is the corresponding dry natural mode.
  
  

Revision as of 00:19, 14 November 2008

Problems in Linear Water-Wave theory in which there is an elastic body.

Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory.

local FE [math]\displaystyle{ \Rightarrow }[/math] global FE model

Dynamic equation of motion in matrix form can be expressed as:

[math]\displaystyle{ \begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+ \begin{bmatrix}S\end{bmatrix}\begin{bmatrix}\dot D\end{bmatrix}+ \begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}= \begin{bmatrix}F(t)\end{bmatrix} }[/math], where:


[math]\displaystyle{ \begin{bmatrix}K\end{bmatrix} }[/math] is structural stiffness matrix,
[math]\displaystyle{ \begin{bmatrix}S\end{bmatrix} }[/math] is structural damping matrix,
[math]\displaystyle{ \begin{bmatrix}M\end{bmatrix} }[/math] is structural mass matrix,
[math]\displaystyle{ \begin{bmatrix}D\end{bmatrix} }[/math] is generalized nodal displacements vector,
[math]\displaystyle{ \begin{bmatrix}F\end{bmatrix} }[/math] is generalized force vector.


The eigenvalue problem for the "dry" natural vibrations yields:

[math]\displaystyle{ \begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}=\begin{bmatrix}0\end{bmatrix} }[/math]


If one assumes trial solution as [math]\displaystyle{ \begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t} }[/math] then the eigenvalue problem reduces to [math]\displaystyle{ \left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix} }[/math], where [math]\displaystyle{ \omega_n }[/math] is the n-th dry natural frequency and [math]\displaystyle{ \begin{bmatrix}w_n\end{bmatrix} }[/math] is the corresponding dry natural mode.


Generalized nodal displacements vector can be expressed using calculated "dry" structure natural modes:


[math]\displaystyle{ \begin{bmatrix}D\end{bmatrix} }[/math]=[math]\displaystyle{ \begin{bmatrix}W\end{bmatrix}\cdot\begin{bmatrix}\xi\end{bmatrix} }[/math]


[math]\displaystyle{ \begin{bmatrix}W\end{bmatrix} }[/math]=[math]\displaystyle{ \begin{bmatrix}\mathbf{w_1}\,\mathbf{w_2}\,\ldots \end{bmatrix} }[/math] is matrix of dry natural modes, with modes being sorted column-wise,
[math]\displaystyle{ \begin{bmatrix}\xi\end{bmatrix} }[/math]is natural modes coefficients vector.


[math]\displaystyle{ \begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}K\end{bmatrix} \begin{bmatrix}W\end{bmatrix} \begin{bmatrix}\xi\end{bmatrix}+\begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}S\end{bmatrix} \begin{bmatrix}W\end{bmatrix} \begin{bmatrix}\dot\xi\end{bmatrix} +\begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}M\end{bmatrix} \begin{bmatrix}W\end{bmatrix} \begin{bmatrix}\ddot\xi\end{bmatrix} }[/math]=[math]\displaystyle{ \begin{bmatrix}W\end{bmatrix}^T\begin{bmatrix}F(t)\end{bmatrix} }[/math]


[math]\displaystyle{ \begin{bmatrix}k\end{bmatrix} \begin{bmatrix}\xi\end{bmatrix}+\begin{bmatrix}s\end{bmatrix} \begin{bmatrix}\dot\xi\end{bmatrix}+\begin{bmatrix}m\end{bmatrix} \begin{bmatrix}\ddot\xi\end{bmatrix} }[/math]=[math]\displaystyle{ \begin{bmatrix}f(t)\end{bmatrix} }[/math]

to be continued...

Subcategories

This category has only the following subcategory.