Difference between revisions of "Cylindrical Eigenfunction Expansion"

From WikiWaves
Jump to navigationJump to search
Line 70: Line 70:
 
<math>
 
<math>
 
- F \eta \sin \big( \eta (z+d) \big) - \alpha F \cos \big( \eta (z+d)
 
- F \eta \sin \big( \eta (z+d) \big) - \alpha F \cos \big( \eta (z+d)
   \big) = 0 \;\; \text{at} \, z=0,
+
   \big) = 0, \quad z=0,
 
</math>
 
</math>
  
Line 83: Line 83:
 
1</math>), but the negative roots produce the same eigenfunctions as the
 
1</math>), but the negative roots produce the same eigenfunctions as the
 
positive ones and will therefore not be considered. It also has a pair of purely imaginary roots which
 
positive ones and will therefore not be considered. It also has a pair of purely imaginary roots which
will be denoted by <math>k_0</math>. Writing $k_0 = - \i k$, $k$ is the
+
will be denoted by <math>k_0</math>. Writing <math>k_0 = - \mathrm{i} k</math>, <math>k</math> is the
 
(positive) root of the dispersion relation
 
(positive) root of the dispersion relation
  
Line 115: Line 115:
 
Substituting this into Laplace's equation yields
 
Substituting this into Laplace's equation yields
  
\begin{equation}\label{pot_cyl_rt2}
+
<math>
 
\frac{r^2}{R(r)} \left[ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left( r
 
\frac{r^2}{R(r)} \left[ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left( r
 
\frac{\mathrm{d} R}{\mathrm{d}r} \right) - k_m^2 R(r) \right] = -
 
\frac{\mathrm{d} R}{\mathrm{d}r} \right) - k_m^2 R(r) \right] = -
 
\frac{1}{\Theta (\theta)} \frac{\mathrm{d}^2 \Theta}{\mathrm{d}
 
\frac{1}{\Theta (\theta)} \frac{\mathrm{d}^2 \Theta}{\mathrm{d}
 
\theta^2} = \eta^2,  
 
\theta^2} = \eta^2,  
\end{equation}
+
</math>
where the separation constant $\eta$ must be an integer, say $\nu$,
+
 
in order for the potential to be continuous \cite[]{linton}. $\Theta
+
 
(\theta)$ can therefore be expressed as  
+
where the separation constant <math>\eta</math> must be an integer, say <math>\nu</math>,  
\begin{equation*}
+
in order for the potential to be continuous. <math>\Theta
\Theta (\theta) = C \, \e^{\i \nu \theta}, \quad \nu \in \mathds{Z}.
+
(\theta)</math> can therefore be expressed as  
\end{equation*}
+
 
 +
<math>
 +
\Theta (\theta) = C \, \mathrm{e}^{\mathrm{i} \nu \theta}, \quad \nu \in \mathbb{Z}.
 +
</math>
 +
 
 
Equation (\ref{pot_cyl_rt2}) also yields
 
Equation (\ref{pot_cyl_rt2}) also yields
\begin{equation}\label{eq_R}
+
 
 +
<math>
 
r \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d}
 
r \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d}
 
R}{\mathrm{d} r} \right) - (\nu^2 + k_m^2 r^2) R(r) = 0, \quad \nu \in
 
R}{\mathrm{d} r} \right) - (\nu^2 + k_m^2 r^2) R(r) = 0, \quad \nu \in
\mathds{Z}.
+
\mathbb{Z}.
\end{equation}
+
</math>
Substituting $\tilde{r}:=k_m r$ and writing $\tilde{R} (\tilde{r}) :=
+
 
R(\tilde{r}/k_m) = R(r)$, this can be rewritten as
+
Substituting <math>\tilde{r}:=k_m r</math> and writing <math>\tilde{R} (\tilde{r}) :=
\begin{equation*}
+
R(\tilde{r}/k_m) = R(r)</math>, this can be rewritten as
 +
 
 +
<math>
 
\tilde{r}^2 \frac{\mathrm{d}^2 \tilde{R}}{\mathrm{d} \tilde{r}^2}
 
\tilde{r}^2 \frac{\mathrm{d}^2 \tilde{R}}{\mathrm{d} \tilde{r}^2}
 
+ \tilde{r} \frac{\mathrm{d} \tilde{R}}{\mathrm{d} \tilde{r}}
 
+ \tilde{r} \frac{\mathrm{d} \tilde{R}}{\mathrm{d} \tilde{r}}
- (\nu^2 + \tilde{r}^2)\, \tilde{R} = 0, \quad \nu \in \mathds{Z},
+
- (\nu^2 + \tilde{r}^2)\, \tilde{R} = 0, \quad \nu \in \mathbb{Z},
\end{equation*}
+
</math>
 +
 
 
which is the modified version of Bessel's equation. Substituting back,
 
which is the modified version of Bessel's equation. Substituting back,
 
the general solution of equation \eqref{eq_R} is given by
 
the general solution of equation \eqref{eq_R} is given by
\begin{equation*} %\label{pot_cyl_r}
+
 
 +
<math>
 
R(r) = D \, I_\nu(k_m r) + E \, K_\nu(k_m r), \quad m \in
 
R(r) = D \, I_\nu(k_m r) + E \, K_\nu(k_m r), \quad m \in
\mathds{N},\ \nu \in \mathds{Z},
+
\mathbb{N},\ \nu \in \mathbb{Z},
\end{equation*}
+
</math>
where $I_\nu$ and $K_\nu$ are the modified Bessel functions of the first
 
and second kind, respectively, of order $\nu$.
 
  
The potential $\phi$ can thus be expressed in local cylindrical
+
where <math>I_\nu</math> and <math>K_\nu</math> are the modified Bessel functions of the first
 +
and second kind, respectively, of order <math>\nu</math>.
 +
 
 +
The potential <math>\phi</math> can thus be expressed in local cylindrical
 
coordinates as
 
coordinates as
\begin{equation}\label{pot_cyl_sol1}
+
 
 +
<math>
 
\phi (r,\theta,z) = \sum_{m = 0}^{\infty} Z_m(z) \sum_{\nu = -
 
\phi (r,\theta,z) = \sum_{m = 0}^{\infty} Z_m(z) \sum_{\nu = -
 
\infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m
 
\infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m
r) \right] \e^{\i \nu \theta},  
+
r) \right] \mathrm{e}^{\mathrm{i} \nu \theta},  
\end{equation}
+
</math>
where $Z_m(z)$ is given by equation \eqref{sol_Z_fin}. Substituting $Z_m$
+
 
into equation (\ref{pot_cyl_sol1}) as well as noting that $k_0=-\i k$ yields  
+
where <math>Z_m(z)</math> is given by equation \eqref{sol_Z_fin}. Substituting <math>Z_m</math>
%\begin{equation}%\label{pot_cyl_sol3}%\begin{split}
+
into equation (\ref{pot_cyl_sol1}) as well as noting that <math>k_0=-\mathrm{i} k</math> yields  
\begin{align*} \phi (r,\theta,z)  
+
 
&= F_0 \cos(-\i k (z+d)) \sum_{\nu = - \infty}^{\infty}
+
<math> \phi (r,\theta,z)  
\left[ D_{0\nu} I_\nu (-\i k r) + E_{0\nu} K_\nu (-\i k r)\right]
+
= F_0 \cos(-\mathrm{i} k (z+d)) \sum_{\nu = - \infty}^{\infty}
\e^{\i \nu \theta}\\
+
\left[ D_{0\nu} I_\nu (-\mathrm{i} k r) + E_{0\nu} K_\nu (-\mathrm{i} k r)\right]
& \quad + \sum_{m = 1}^{\infty} F_m \cos(k_m(z+d)) \sum_{\nu = -
+
\mathrm{e}^{\mathrm{i} \nu \theta}
 +
+ \sum_{m = 1}^{\infty} F_m \cos(k_m(z+d)) \sum_{\nu = -
 
\infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m
 
\infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m
r) \right] \e^{\i \nu \theta}.
+
r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}.
\end{align*}
+
</math>
%\end{equation}
+
 
Noting that $\cos \i x = \cosh x$ is an even function and the
+
Noting that <math>\cos \mathrm{i} x = \cosh x</math> is an even function and the
relations $I_\nu(-\i x) = (-\i)^{\nu} J_\nu(x)$ where $J_\nu$ is the Bessel
+
relations <math>I_\nu(-\mathrm{i} x) = (-\mathrm{i})^{\nu} J_\nu(x)</math> where <math>J_\nu</math> is the Bessel
function of the first kind of order $\nu$ and $K_\nu (-\i x) = \pi / 2\,\,
+
function of the first kind of order <math>\nu</math> and <math>K_\nu (-\mathrm{i} x) = \pi / 2\,\,
\i^{\nu+1} H_\nu^{(1)}(x)$ with $H_\nu^{(1)}$ denoting
+
\mathrm{i}^{\nu+1} H_\nu^{(1)}(x)</math> with <math>H_\nu^{(1)}</math> denoting
the Hankel function of the first kind of order $\nu$
+
the Hankel function of the first kind of order <math>\nu</math>, it follows that
\cite[]{abramowitz}, it follows that
+
 
\begin{equation}\label{pot_cyl_sol2}\begin{split} \phi (r,\theta,z)  
+
<math>
&= \cosh(k (z+d)) \sum_{\nu = - \infty}^{\infty}
+
\phi (r,\theta,z)  
 +
= \cosh(k (z+d)) \sum_{\nu = - \infty}^{\infty}
 
\left[ D_{0\nu}' J_\nu (k r) + E_{0\nu}' H_\nu^{(1)} (k r)\right]
 
\left[ D_{0\nu}' J_\nu (k r) + E_{0\nu}' H_\nu^{(1)} (k r)\right]
\e^{\i \nu \theta}\\
+
\mathrm{e}^{\mathrm{i} \nu \theta} + \sum_{m = 1}^{\infty} F_m \cos(k_m(z+d)) \sum_{\nu = -
& \quad + \sum_{m = 1}^{\infty} F_m \cos(k_m(z+d)) \sum_{\nu = -
 
 
\infty}^{\infty} \left[ D_{m\nu}' I_\nu (k_m r) + E_{m\nu}' K_\nu (k_m
 
\infty}^{\infty} \left[ D_{m\nu}' I_\nu (k_m r) + E_{m\nu}' K_\nu (k_m
r) \right] \e^{\i \nu \theta}.
+
r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}.
\end{split}\end{equation}
+
</math>
However, $J_\nu$ does not satisfy the radiation condition
+
 
\eqref{water_rad} and neither does $I_\nu$ since it becomes unbounded for
+
However, <math>J_\nu</math> does not satisfy the radiation
increasing real argument. These two solutions represent incoming
+
condition \eqref{water_rad} and neither does <math>I_\nu</math>
waves which will also be required later.  
+
since it becomes unbounded for increasing real argument. These
 +
two solutions represent incoming waves which will also be
 +
required later.
 +
 
 +
Therefore, the solution of the problem requires <math>D_{m\nu}'=0</math>
 +
for all <math>m,\nu</math>. Therefore, the
 +
eigenfunction expansion of the water velocity potential in
 +
cylindrical outgoing waves with coefficients <math>A_{m\nu}</math> is given by
 +
 
 +
<math>
 +
\phi (r,\theta,z) = \frac{\cosh(k (z+d))}{\cosh kd} \sum_{\nu = -
 +
\infty}^{\infty} A_{0\nu} H_\nu^{(1)} (k r) \mathrm{e}^{\mathrm{i} \nu \theta} + \sum_{m = 1}^{\infty} \frac{\cos(k_m(z+d))}{\cos k_m d}
 +
\sum_{\nu = - \infty}^{\infty} A_{m\nu} K_\nu (k_m r) \mathrm{e}^{\mathrm{i} \nu \theta}.
 +
</math>
  
Therefore, the solution of problem \eqref{pot_cyl}, \eqref{water_freesurf},
 
\eqref{water_bed_2} and \eqref{water_rad} requires  $D_{m\nu}'=0$
 
for all $m,\nu$ and  (\ref{pot_cyl_sol2}) simplifies to the
 
eigenfunction expansion of the water velocity potential into
 
cylindrical outgoing waves with coefficients $A_{m\nu}$,
 
\begin{equation}\label{basisrep_d}\begin{split}
 
\phi (r,\theta,z) &= \frac{\cosh(k (z+d))}{\cosh kd} \sum_{\nu = -
 
\infty}^{\infty} A_{0\nu} H_\nu^{(1)} (k r) \e^{\i \nu \theta}\\
 
& \quad + \sum_{m = 1}^{\infty} \frac{\cos(k_m(z+d))}{\cos k_m d}
 
\sum_{\nu = - \infty}^{\infty} A_{m\nu} K_\nu (k_m r) \e^{\i \nu \theta}.
 
\end{split}\end{equation}
 
 
The two terms describe the propagating and the decaying wavefields
 
The two terms describe the propagating and the decaying wavefields
 
respectively.
 
respectively.
%Even though it is not proven
 
%here that these functions actually form a basis for the water velocity
 
%potential of outgoing waves, this eigenmode representation will formally be
 
%referred to as ``basis representation'' in the following.
 
  
  
\subsection{The case of infinitely deep water}
+
= The case of infinitely deep water =
 +
 
 
A solution will be developed for the same setting as before but under the
 
A solution will be developed for the same setting as before but under the
 
assumption of water of infinite depth. As in the previous section,
 
assumption of water of infinite depth. As in the previous section,

Revision as of 11:30, 20 April 2006

The problem for the complex water velocity potential in cylindrical coordinates, [math]\displaystyle{ \phi (r,\theta,z) }[/math], is given by

[math]\displaystyle{ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial^2 \phi}{\partial z^2} = 0, \quad (r,\theta,z) \in \mathbb{R}_{\gt 0} \, \times \ ]- \pi, \pi] \times \mathbb{R}_{\lt 0}, }[/math]

[math]\displaystyle{ \frac{\partial \phi}{\partial z} - \alpha \phi = 0, \quad (r,\theta,z) \in \mathbb{R}_{\gt 0}\, \times \, ]\!- \pi, \pi] \times \{ 0 \}, }[/math]

as well as

[math]\displaystyle{ \frac{\partial \phi}{\partial z} = 0, \quad (r,\theta,z) \in \mathbb{R}_{\gt 0}\, \times \,]\!- \pi, \pi] \times \{ -d \}, }[/math]

in the case of constant finite water depth [math]\displaystyle{ d }[/math] and

[math]\displaystyle{ \sup \big\{ \, |\phi| \ \big| \ (r,\theta,z) \in \mathbb{R}_{\gt 0}\, \times \, ]\!- \pi, \pi] \times \mathbb{R}_{\lt 0} \,\big\} \lt \infty }[/math]

in the case of infinite water depth. Moreover, the radiation condition

[math]\displaystyle{ \lim_{r \rightarrow \infty} \sqrt{r} \, \Big( \frac{\partial}{\partial r} - \mathrm{i} k \Big) \phi = 0 }[/math]

with the wavenumber [math]\displaystyle{ k }[/math] also applies.

The case of water of finite depth

The solution of the problem for the potential in finite water depth can be found by a separation ansatz,

[math]\displaystyle{ \phi (r,\theta,z) =: Y(r,\theta) Z(z). }[/math]

Substituting this into the equation for [math]\displaystyle{ \pi }[/math] yields

[math]\displaystyle{ \frac{1}{Y(r,\theta)} \left[ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} \right] = - \frac{1}{Z(z)} \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2. }[/math]

The possible separation constants [math]\displaystyle{ \eta }[/math] will be determined by the free surface condition and the bed condition.

In the setting of water of finite depth, the general solution [math]\displaystyle{ Z(z) }[/math] can be written as

[math]\displaystyle{ Z(z) = F \cos \big( \eta (z+d) \big) + G \sin \big( \eta (z+d) \big), \quad \eta \in \mathbb{C} \backslash \{ 0 \}, }[/math]

since [math]\displaystyle{ \eta = 0 }[/math] is not an eigenvalue. To satisfy the bed condition, [math]\displaystyle{ G }[/math] must be [math]\displaystyle{ 0 }[/math]. [math]\displaystyle{ Z(z) }[/math] satisfies the free surface condition, provided the separation constants [math]\displaystyle{ \eta }[/math] are roots of the equation

[math]\displaystyle{ - F \eta \sin \big( \eta (z+d) \big) - \alpha F \cos \big( \eta (z+d) \big) = 0, \quad z=0, }[/math]

or, equivalently, if they satisfy

[math]\displaystyle{ \alpha + \eta \tan \eta d = 0. }[/math]

This equation, also called dispersion relation, has an infinite number of real roots, denoted by [math]\displaystyle{ k_m }[/math] and [math]\displaystyle{ -k_m }[/math] ([math]\displaystyle{ m \geq 1 }[/math]), but the negative roots produce the same eigenfunctions as the positive ones and will therefore not be considered. It also has a pair of purely imaginary roots which will be denoted by [math]\displaystyle{ k_0 }[/math]. Writing [math]\displaystyle{ k_0 = - \mathrm{i} k }[/math], [math]\displaystyle{ k }[/math] is the (positive) root of the dispersion relation

[math]\displaystyle{ \alpha = k \tanh k d, }[/math]

again it suffices to consider only the positive root. The solutions can therefore be written as

[math]\displaystyle{ Z_m(z) = F_m \cos \big( k_m (z+d) \big), \quad m \geq 0. }[/math]

It follows that [math]\displaystyle{ k }[/math] is the previously introduced wavenumber and the dispersion relation gives the required relation to the radian frequency.

For the solution of

[math]\displaystyle{ \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial Y}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 Y}{\partial \theta^2} = k_m^2 Y(r,\theta), }[/math]

another separation will be used,

[math]\displaystyle{ Y(r,\theta) =: R(r) \Theta(\theta). }[/math]

Substituting this into Laplace's equation yields

[math]\displaystyle{ \frac{r^2}{R(r)} \left[ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d}r} \right) - k_m^2 R(r) \right] = - \frac{1}{\Theta (\theta)} \frac{\mathrm{d}^2 \Theta}{\mathrm{d} \theta^2} = \eta^2, }[/math]


where the separation constant [math]\displaystyle{ \eta }[/math] must be an integer, say [math]\displaystyle{ \nu }[/math], in order for the potential to be continuous. [math]\displaystyle{ \Theta (\theta) }[/math] can therefore be expressed as

[math]\displaystyle{ \Theta (\theta) = C \, \mathrm{e}^{\mathrm{i} \nu \theta}, \quad \nu \in \mathbb{Z}. }[/math]

Equation (\ref{pot_cyl_rt2}) also yields

[math]\displaystyle{ r \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d} R}{\mathrm{d} r} \right) - (\nu^2 + k_m^2 r^2) R(r) = 0, \quad \nu \in \mathbb{Z}. }[/math]

Substituting [math]\displaystyle{ \tilde{r}:=k_m r }[/math] and writing [math]\displaystyle{ \tilde{R} (\tilde{r}) := R(\tilde{r}/k_m) = R(r) }[/math], this can be rewritten as

[math]\displaystyle{ \tilde{r}^2 \frac{\mathrm{d}^2 \tilde{R}}{\mathrm{d} \tilde{r}^2} + \tilde{r} \frac{\mathrm{d} \tilde{R}}{\mathrm{d} \tilde{r}} - (\nu^2 + \tilde{r}^2)\, \tilde{R} = 0, \quad \nu \in \mathbb{Z}, }[/math]

which is the modified version of Bessel's equation. Substituting back, the general solution of equation \eqref{eq_R} is given by

[math]\displaystyle{ R(r) = D \, I_\nu(k_m r) + E \, K_\nu(k_m r), \quad m \in \mathbb{N},\ \nu \in \mathbb{Z}, }[/math]

where [math]\displaystyle{ I_\nu }[/math] and [math]\displaystyle{ K_\nu }[/math] are the modified Bessel functions of the first and second kind, respectively, of order [math]\displaystyle{ \nu }[/math].

The potential [math]\displaystyle{ \phi }[/math] can thus be expressed in local cylindrical coordinates as

[math]\displaystyle{ \phi (r,\theta,z) = \sum_{m = 0}^{\infty} Z_m(z) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}, }[/math]

where [math]\displaystyle{ Z_m(z) }[/math] is given by equation \eqref{sol_Z_fin}. Substituting [math]\displaystyle{ Z_m }[/math] into equation (\ref{pot_cyl_sol1}) as well as noting that [math]\displaystyle{ k_0=-\mathrm{i} k }[/math] yields

[math]\displaystyle{ \phi (r,\theta,z) = F_0 \cos(-\mathrm{i} k (z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{0\nu} I_\nu (-\mathrm{i} k r) + E_{0\nu} K_\nu (-\mathrm{i} k r)\right] \mathrm{e}^{\mathrm{i} \nu \theta} + \sum_{m = 1}^{\infty} F_m \cos(k_m(z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu} I_\nu (k_m r) + E_{m\nu} K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

Noting that [math]\displaystyle{ \cos \mathrm{i} x = \cosh x }[/math] is an even function and the relations [math]\displaystyle{ I_\nu(-\mathrm{i} x) = (-\mathrm{i})^{\nu} J_\nu(x) }[/math] where [math]\displaystyle{ J_\nu }[/math] is the Bessel function of the first kind of order [math]\displaystyle{ \nu }[/math] and [math]\displaystyle{ K_\nu (-\mathrm{i} x) = \pi / 2\,\, \mathrm{i}^{\nu+1} H_\nu^{(1)}(x) }[/math] with [math]\displaystyle{ H_\nu^{(1)} }[/math] denoting the Hankel function of the first kind of order [math]\displaystyle{ \nu }[/math], it follows that

[math]\displaystyle{ \phi (r,\theta,z) = \cosh(k (z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{0\nu}' J_\nu (k r) + E_{0\nu}' H_\nu^{(1)} (k r)\right] \mathrm{e}^{\mathrm{i} \nu \theta} + \sum_{m = 1}^{\infty} F_m \cos(k_m(z+d)) \sum_{\nu = - \infty}^{\infty} \left[ D_{m\nu}' I_\nu (k_m r) + E_{m\nu}' K_\nu (k_m r) \right] \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

However, [math]\displaystyle{ J_\nu }[/math] does not satisfy the radiation condition \eqref{water_rad} and neither does [math]\displaystyle{ I_\nu }[/math] since it becomes unbounded for increasing real argument. These two solutions represent incoming waves which will also be required later.

Therefore, the solution of the problem requires [math]\displaystyle{ D_{m\nu}'=0 }[/math] for all [math]\displaystyle{ m,\nu }[/math]. Therefore, the eigenfunction expansion of the water velocity potential in cylindrical outgoing waves with coefficients [math]\displaystyle{ A_{m\nu} }[/math] is given by

[math]\displaystyle{ \phi (r,\theta,z) = \frac{\cosh(k (z+d))}{\cosh kd} \sum_{\nu = - \infty}^{\infty} A_{0\nu} H_\nu^{(1)} (k r) \mathrm{e}^{\mathrm{i} \nu \theta} + \sum_{m = 1}^{\infty} \frac{\cos(k_m(z+d))}{\cos k_m d} \sum_{\nu = - \infty}^{\infty} A_{m\nu} K_\nu (k_m r) \mathrm{e}^{\mathrm{i} \nu \theta}. }[/math]

The two terms describe the propagating and the decaying wavefields respectively.


The case of infinitely deep water

A solution will be developed for the same setting as before but under the assumption of water of infinite depth. As in the previous section, Laplace's equation must be solved in cylindrical coordinates satisfying the free surface and the radiation condition. However, instead of the bed condition, %equation \eqref{water_bed}, the water velocity potential is also required to satisfy the depth condition. Therefore, $Z(z)$ in equation \eqref{pot_cyl_z} must be solved for satisfying the depth condition \eqref{water_infdep}. It will turn out that in the case of infinitely deep water an uncountable amount of separation constants $\eta$ is valid.

As in equation \eqref{sol_Z}, the general solution can be represented as \begin{equation*} Z(z) = F \e^{\i \eta z} + G \e^{- \i \eta z}, \quad \eta \in \mathds{C} \backslash \{0\}. \end{equation*} Assuming $\eta$ has got a positive imaginary part, in order to satisfy the depth condition, $F$ must be zero. $Z(z)$ then satisfies the free surface condition if $\eta$ is a root of %the dispersion relation \begin{equation*} -G \i \eta \e^{-\i \eta z} - \alpha G \e^{-\i \eta z} = 0 \;\;

\text{at} \: z=0,

\end{equation*} which yields the dispersion relation \begin{equation}\label{eta_inf} \eta = - \i \alpha. \end{equation} Therefore, $\eta$ must even be purely imaginary. For $\Im \eta < 0$, equation \eqref{eta_inf} is also obtained, but with a minus sign in front of $\eta$. However, this yields the same solution. One solution can therefore be written as \begin{equation}\label{Z_prop} Z(z) = G \e^{\alpha z}. \end{equation}

Now, $\eta$ is assumed real. In this case, it is convenient to write the general solution in terms of cosine and sine, \begin{equation}\label{Z_gen_inf} Z(z) = F \cos(\eta z) + G \sin(\eta z), \quad \eta \in \mathds{R} \backslash \{0\}. \end{equation} This solution satisfies the depth condition automatically. Making use of the free surface condition, it follows that \begin{equation*} (-\eta F - \alpha G) \sin (\eta z) + (\eta G - \alpha F) \cos(\eta z) = 0 \quad \text{at} \: z=0, \end{equation*} which can be solved for $G$, \begin{equation*} G = \frac{\alpha}{\eta} \, F. \end{equation*} Substituting this back into \eqref{Z_gen_inf} gives \begin{equation*} Z(z) = F \big( \cos(\eta z) + \frac{\alpha}{\eta} \sin(\eta z) \big) , \quad \eta \in \mathds{R} \backslash \{0\}. \end{equation*} Obviously, a negative value of $\eta$ produces the same eigenfunction as the positive one. Therefore, only positive ones are considered, leading to the definition \begin{equation}\label{def_psi} \psi(z,\eta) := \cos(\eta z) + \frac{\alpha}{\eta} \sin(\eta z), \quad (z,\eta) \in \mathds{R}_{\leq0} \times \mathds{R}_{>0}. \end{equation} Equations \eqref{Z_prop} and \eqref{def_psi} therefore give the vertical eigenfunctions in infinite depth.

For the radial and angular coordinate the same separation can be used as in the finite depth case so that the general solution of problem \eqref{pot_cyl}, \eqref{water_freesurf} and \eqref{water_infdep}, in analogy to \eqref{pot_cyl_sol1}, can be written as \begin{equation*}\begin{split} \phi (r,\theta,z) &= \e^{\alpha z} \sum_{\nu = - \infty}^{\infty} \left[ E_\nu (-\i \alpha) I_\nu (-\i \alpha r) + F_{\nu} (-\i \alpha) K_\nu (-\i \alpha r) \right] \e^{\i \nu \theta}\\ & \quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = - \infty}^{\infty} \left[ E_\nu I_\nu (\eta r) + F_{\nu} (\eta) K_\nu (\eta r) \right] \e^{\i \nu \theta} \d\eta. \end{split}\end{equation*} Making use of the radiation condition, equation \eqref{water_rad}, as well as the relations of the Bessel functions in the same way as in the finite depth case, this can be rewritten as the eigenfunction expansion of the water velocity potential into cylindrical outgoing waves in water of infinite depth, \begin{equation}\label{basisrep_inf} \phi (r,\theta,z) = \e^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{\nu} (\i \alpha) H_\nu^{(1)} (\alpha r) \e^{\i \nu \theta} + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = - \infty}^{\infty} A_{\nu} (\eta) K_\nu (\eta r) \e^{\i \nu \theta} \d\eta.