Derivative Seakeeping Quantities

From WikiWaves
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Wave and Wave Body Interactions
Current Chapter Derivative Seakeeping Quantities
Next Chapter Seakeeping In Random Waves
Previous Chapter Ship Roll-Sway-Yaw Motions




The principal seakeeping quantity from a seakeeping analysis of a floating body at zero or forward speed is the Response Amplitude Operator (or RAO)

[math]\displaystyle{ \xi_j(t) = \mathrm{Re} \left\{ \Pi_j (\omega) e^{i\omega t} \right\} \, }[/math]
[math]\displaystyle{ RAO = \frac{\Pi_j(\omega)}{A}, \quad j=1,2,3 \, }[/math]
[math]\displaystyle{ = \frac{\Pi_j(\omega)}{A/L}, \quad j=4,5,6 \, }[/math]

where [math]\displaystyle{ L\, }[/math] is a characteristic length. The RAO is a complex quantity with phase defined relative to the ambient wave elevation at the origin of the coordinate system

[math]\displaystyle{ \zeta_I = \mathrm{Re} \left\{ A e^{i\omega t} \right\} \, }[/math]

It follows that the only seakeeping quantity with [math]\displaystyle{ RAO\equiv 1 \, }[/math] is [math]\displaystyle{ \zeta_I(t)\, }[/math].

A partial list of derivative seakeeping quantities of interest in practice is:

  • Free-surface elevation. Needed to estimate the clearance under the deck of offshore platforms.
  • Vessel kinematics at specified points, e.g. needed to estimate the motion properties of containerized cargo.
  • Relative wave elevation and velocity near the bow of a ship. Needed to estimate the occurrence and severity of slamming.
  • Local and global structural loads needed for the vessel structural design.

According to linear theory, all derivative quantities which are linear superpositions of other quantities, take the form

[math]\displaystyle{ Z(t) = \mathrm{Re} \left\{ \mathbb{Z}(\omega) e^{i\omega t} \right\}, \quad RAO=\frac{\mathbb{Z}(\omega)}{A} }[/math]

Example 1 - Acceleration RAO at the bow of a ship

The vertical displacement of point [math]\displaystyle{ A\, }[/math] due to the vessel heave & pitch motions is

[math]\displaystyle{ \xi_A (t) = \xi_3 (t) - X_A \xi_5 (t) \, }[/math]
[math]\displaystyle{ \frac{d^2\xi_A(t)}{dt^2} = \ddot{\xi}_3(t) - X_A \ddot{\xi}_5(t) = \mathrm{Re} \left\{ -\omega^2 \left[ \Pi_3 - X_A \Pi_5 \right] e^{i\omega t} \right\} }[/math]

So the corresponding RAO in waves of amplitude [math]\displaystyle{ A\, }[/math] is:

[math]\displaystyle{ RAO = \frac{-\omega^2 \left(\Pi_3 -X_A \Pi_5 \right)}{A} = -\omega^2 \left(RAO_3 - X_A RAO_5 \right) }[/math]

So the RAO of the vertical acceleration at the bow is a linear combination of the heave and pitch RAO's.

Example 2 - Hydrodynamic pressure disturbance at a fixed point on a ship hull oscillating in heave & pitch in waves

The linear hydrodynamic pressures at a point [math]\displaystyle{ A\, }[/math] located at [math]\displaystyle{ \vec{X}_A\, }[/math] relative to the ship frame is:

[math]\displaystyle{ P_A = \mathrm{Re} \left\{ \mathbb{P}_A e^{i\omega t} \right\} \, }[/math]

where

[math]\displaystyle{ \mathbb{P}_A = - \rho \left\{ \left( i\omega - U \frac{\partial}{\partial X} \right) \left( \phi_3 + \phi_5 \right) + \left( i\omega - U \frac{\partial}{\partial x} \right) \left( \phi_I + \phi_D \right) + g \left( \Pi_3 - X \Pi_5 \right) \right\} _{\vec{X}_A} \, }[/math]
[math]\displaystyle{ RAO = \frac{\mathbb{P}_A}{A} \, }[/math]

.


Ocean Wave Interaction with Ships and Offshore Energy Systems