Difference between revisions of "Dispersion Relation for a Floating Elastic Plate"

From WikiWaves
Jump to navigationJump to search
 
Line 5: Line 5:
 
<math>f(\gamma)=\cosh(\gamma H)-(\gamma^4+\varpi)\gamma\sinh(\gamma H)=0,</math>
 
<math>f(\gamma)=\cosh(\gamma H)-(\gamma^4+\varpi)\gamma\sinh(\gamma H)=0,</math>
  
where
+
where <math>H</math> is the nodimensional water depth, and
  
 
<math>\varpi=(1-k\sigma)/(kL),\quad k=\omega^2/g,\quad\sigma=\rho_ih/\rho,\quad L^5=D/(\rho\omega^2).</math>
 
<math>\varpi=(1-k\sigma)/(kL),\quad k=\omega^2/g,\quad\sigma=\rho_ih/\rho,\quad L^5=D/(\rho\omega^2).</math>
  
 
<math> k </math> is the waver number for a wave of radial frequency <math> omega </math> traveling in open water of infinite depth, <math> g </math> is the acceleration due to gravity, <math> sigma </math> is the amount of the plate that is submerged, <math> rho_i </math> and <math> rho </math> are the densities of the plate and the water respectively, <math> h </math> and <math> D </math> are the thickness and flexural rigidity of the plate, and <math> L </math> is the natural length that we have scaled length variables by. The dispersion relation relates the wavenumber <math> gamma </math> and thus speed (<math> =omega/gamma </math>) to the above parameters.
 
<math> k </math> is the waver number for a wave of radial frequency <math> omega </math> traveling in open water of infinite depth, <math> g </math> is the acceleration due to gravity, <math> sigma </math> is the amount of the plate that is submerged, <math> rho_i </math> and <math> rho </math> are the densities of the plate and the water respectively, <math> h </math> and <math> D </math> are the thickness and flexural rigidity of the plate, and <math> L </math> is the natural length that we have scaled length variables by. The dispersion relation relates the wavenumber <math> gamma </math> and thus speed (<math> =omega/gamma </math>) to the above parameters.

Revision as of 03:53, 12 May 2006

Dispersion Relation for a Floating Elastic Plate

The (nondimensional) dispersion relation for a floating thin elastic plate can be written

[math]\displaystyle{ f(\gamma)=\cosh(\gamma H)-(\gamma^4+\varpi)\gamma\sinh(\gamma H)=0, }[/math]

where [math]\displaystyle{ H }[/math] is the nodimensional water depth, and

[math]\displaystyle{ \varpi=(1-k\sigma)/(kL),\quad k=\omega^2/g,\quad\sigma=\rho_ih/\rho,\quad L^5=D/(\rho\omega^2). }[/math]

[math]\displaystyle{ k }[/math] is the waver number for a wave of radial frequency [math]\displaystyle{ omega }[/math] traveling in open water of infinite depth, [math]\displaystyle{ g }[/math] is the acceleration due to gravity, [math]\displaystyle{ sigma }[/math] is the amount of the plate that is submerged, [math]\displaystyle{ rho_i }[/math] and [math]\displaystyle{ rho }[/math] are the densities of the plate and the water respectively, [math]\displaystyle{ h }[/math] and [math]\displaystyle{ D }[/math] are the thickness and flexural rigidity of the plate, and [math]\displaystyle{ L }[/math] is the natural length that we have scaled length variables by. The dispersion relation relates the wavenumber [math]\displaystyle{ gamma }[/math] and thus speed ([math]\displaystyle{ =omega/gamma }[/math]) to the above parameters.