Difference between revisions of "Eigenfunction Matching for a Circular Floating Elastic Plate"

From WikiWaves
Jump to navigationJump to search
Line 15: Line 15:
 
upward with the water surface at <math>z=0</math> and the sea floor at <math>z=-H</math>. The
 
upward with the water surface at <math>z=0</math> and the sea floor at <math>z=-H</math>. The
 
boundary value problem can therefore be expressed as
 
boundary value problem can therefore be expressed as
 
+
<center>
 
<math>
 
<math>
 
\Delta\phi=0, \,\, -H<z<0,
 
\Delta\phi=0, \,\, -H<z<0,
 
</math>
 
</math>
 
+
</center>
 +
<center>
 
<math>
 
<math>
 
\phi_{z}=0, \,\, z=-H,
 
\phi_{z}=0, \,\, z=-H,
 
</math>
 
</math>
 
+
</center>
<math>
+
<center><math>
 
\phi_{z}=\alpha\phi, \,\, z=0,\,r>a,
 
\phi_{z}=\alpha\phi, \,\, z=0,\,r>a,
</math>
+
</center></math>
 
+
<center>
 
<math>
 
<math>
 
(\beta\Delta^{2}+1-\alpha\gamma)\phi_{z}=\alpha\phi, \,\, z=0,\,r<a
 
(\beta\Delta^{2}+1-\alpha\gamma)\phi_{z}=\alpha\phi, \,\, z=0,\,r<a
 
</math>
 
</math>
 
+
</center>
 
where the constants <math>\beta</math> and <math>\gamma</math> are given by
 
where the constants <math>\beta</math> and <math>\gamma</math> are given by
 
+
<center>
 
<math>
 
<math>
 
\beta=\frac{D}{\rho\,L^{4}g}, \gamma=\frac{\rho_{i}h}{\rho\,L}
 
\beta=\frac{D}{\rho\,L^{4}g}, \gamma=\frac{\rho_{i}h}{\rho\,L}
 
</math>
 
</math>
 
+
</center>
 
and <math>\rho_{i}</math> is the density of the plate. We
 
and <math>\rho_{i}</math> is the density of the plate. We
 
must also apply the edge conditions for the plate and the [[Sommerfeld Radiation Condition]]
 
must also apply the edge conditions for the plate and the [[Sommerfeld Radiation Condition]]
Line 49: Line 50:
 
We now separate variables, noting that since the problem has
 
We now separate variables, noting that since the problem has
 
circular symmetry we can write the potential as
 
circular symmetry we can write the potential as
 
+
<center>
 
<math>
 
<math>
 
\phi(r,\theta,z)=\zeta(z)\sum_{n=-\infty}^{\infty}\rho_{n}(r)e^{i n \theta}
 
\phi(r,\theta,z)=\zeta(z)\sum_{n=-\infty}^{\infty}\rho_{n}(r)e^{i n \theta}
 
</math>
 
</math>
 
+
</center>
 
Applying Laplace's equation we obtain
 
Applying Laplace's equation we obtain
 
+
<center>
 
<math>
 
<math>
 
\zeta_{zz}+\mu^{2}\zeta=0
 
\zeta_{zz}+\mu^{2}\zeta=0
 
</math>
 
</math>
 
+
</center>
 
so that:
 
so that:
 
+
<center>
 
<math>
 
<math>
 
\zeta=\cos\mu(z+H)
 
\zeta=\cos\mu(z+H)
 
</math>
 
</math>
 
+
</center>
 
where the separation constant <math>\mu^{2}</math> must
 
where the separation constant <math>\mu^{2}</math> must
 
satisfy the [[Dispersion Relation for a Free Surface]]
 
satisfy the [[Dispersion Relation for a Free Surface]]
 
+
<center>
 
<math>
 
<math>
 
k\tan\left(  kH\right)  =-\alpha,\quad r>a\,\,\,(1)
 
k\tan\left(  kH\right)  =-\alpha,\quad r>a\,\,\,(1)
 
</math>
 
</math>
 
+
</center>
 
and the [[Dispersion Relation for a Floating Elastic Plate]]
 
and the [[Dispersion Relation for a Floating Elastic Plate]]
 
+
<center>
 
<math>
 
<math>
 
\kappa\tan(\kappa H)=\frac{-\alpha}{\beta\kappa^{4}+1-\alpha\gamma},\quad
 
\kappa\tan(\kappa H)=\frac{-\alpha}{\beta\kappa^{4}+1-\alpha\gamma},\quad
 
r<a \,\,\,(2)
 
r<a \,\,\,(2)
 
</math>
 
</math>
 
+
</center>
 
Note that we have set <math>\mu=k</math> under the free
 
Note that we have set <math>\mu=k</math> under the free
 
surface and <math>\mu=\kappa</math> under the plate. We denote the
 
surface and <math>\mu=\kappa</math> under the plate. We denote the
Line 90: Line 91:
 
the negative imaginary solution is <math>\kappa_{0}</math> and the positive real
 
the negative imaginary solution is <math>\kappa_{0}</math> and the positive real
 
solutions are <math>\kappa_{m}</math>, <math>m\geq1</math>. We define
 
solutions are <math>\kappa_{m}</math>, <math>m\geq1</math>. We define
 
+
<center>
 
<math>
 
<math>
 
\phi_{m}\left(  z\right)  =\frac{\cos k_{m}(z+H)}{\cos k_{m}H},\quad m\geq0
 
\phi_{m}\left(  z\right)  =\frac{\cos k_{m}(z+H)}{\cos k_{m}H},\quad m\geq0
 
</math>
 
</math>
 
+
</center>
 
as the vertical eigenfunction of the potential in the open
 
as the vertical eigenfunction of the potential in the open
 
water region and
 
water region and
 
+
<center>
 
<math>
 
<math>
 
\psi_{m}\left(  z\right)  =\frac{\cos\kappa_{m}(z+H)}{\cos\kappa_{m}H},\quad
 
\psi_{m}\left(  z\right)  =\frac{\cos\kappa_{m}(z+H)}{\cos\kappa_{m}H},\quad
 
m\geq-2
 
m\geq-2
 
</math>
 
</math>
 
+
</center>
 
as the vertical eigenfunction of the potential in the plate
 
as the vertical eigenfunction of the potential in the plate
 
covered region. For later reference, we note that:
 
covered region. For later reference, we note that:
 
+
<center>
 
<math>
 
<math>
 
\int\nolimits_{-H}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn}
 
\int\nolimits_{-H}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn}
 
</math>
 
</math>
 
+
</center>
 
where
 
where
 
+
<center>
 
<math>
 
<math>
 
A_{m}=\frac{1}{2}\left(  \frac{\cos k_{m}H\sin k_{m}H+k_{m}H}{k_{m}\cos
 
A_{m}=\frac{1}{2}\left(  \frac{\cos k_{m}H\sin k_{m}H+k_{m}H}{k_{m}\cos
 
^{2}k_{m}H}\right)
 
^{2}k_{m}H}\right)
 
</math>
 
</math>
 
+
</center>
 
and
 
and
 
+
<center>
 
<math>
 
<math>
 
\int\nolimits_{-H}^{0}\phi_{n}(z)\psi_{m}(z) d z=B_{mn}
 
\int\nolimits_{-H}^{0}\phi_{n}(z)\psi_{m}(z) d z=B_{mn}
 
</math>
 
</math>
 
+
</center>
 
where
 
where
<math>
+
<center><math>
 
B_{mn}=\frac{k_{n}\sin k_{n}H\cos\kappa_{m}H-\kappa_{m}\cos k_{n}H\sin
 
B_{mn}=\frac{k_{n}\sin k_{n}H\cos\kappa_{m}H-\kappa_{m}\cos k_{n}H\sin
 
\kappa_{m}H}{\left(  \cos k_{n}H\cos\kappa_{m}H\right)  \left(  k_{n}
 
\kappa_{m}H}{\left(  \cos k_{n}H\cos\kappa_{m}H\right)  \left(  k_{n}
 
^{2}-\kappa_{m}^{2}\right)  }
 
^{2}-\kappa_{m}^{2}\right)  }
</math>
+
</center></math>
 
 
  
 
We now solve for the function <math>\rho_{n}(r)</math>.
 
We now solve for the function <math>\rho_{n}(r)</math>.
 
Using Laplace's equation in polar coordinates we obtain
 
Using Laplace's equation in polar coordinates we obtain
 
+
<center>
 
<math>
 
<math>
 
\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}r^{2}}+\frac{1}{r}  
 
\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}r^{2}}+\frac{1}{r}  
Line 139: Line 139:
 
\frac{n^{2}}{r^{2}}+\mu^{2}\right)  \rho_{n}=0
 
\frac{n^{2}}{r^{2}}+\mu^{2}\right)  \rho_{n}=0
 
</math>
 
</math>
 
+
</center>
 
where <math>\mu</math> is <math>k_{m}</math> or
 
where <math>\mu</math> is <math>k_{m}</math> or
 
<math>\kappa_{m},</math> depending on whether <math>r</math> is
 
<math>\kappa_{m},</math> depending on whether <math>r</math> is
 
greater or less than <math>a</math>. We can convert this equation to the
 
greater or less than <math>a</math>. We can convert this equation to the
 
standard form by substituting <math>y=\mu r</math> to obtain
 
standard form by substituting <math>y=\mu r</math> to obtain
 
+
<center>
 
<math>
 
<math>
 
y^{2}\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}y^{2}}+y\frac{\mathrm{d}\rho_{n}
 
y^{2}\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}y^{2}}+y\frac{\mathrm{d}\rho_{n}
 
}{\rm{d}y}-(n^{2}+y^{2})\rho_{n}=0
 
}{\rm{d}y}-(n^{2}+y^{2})\rho_{n}=0
 
</math>
 
</math>
 
+
</center>
 
The solution of this equation is a linear combination of the
 
The solution of this equation is a linear combination of the
 
modified Bessel functions of order <math>n</math>, <math>I_{n}(y)</math> and
 
modified Bessel functions of order <math>n</math>, <math>I_{n}(y)</math> and
Line 157: Line 157:
 
linear combination of <math>K_{n}(y)</math>. Therefore the potential can
 
linear combination of <math>K_{n}(y)</math>. Therefore the potential can
 
be expanded as
 
be expanded as
 
+
<center>
 
<math>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n}
 
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n}
 
(k_{m}r)e^{i n\theta}\phi_{m}(z), \;\;r>a
 
(k_{m}r)e^{i n\theta}\phi_{m}(z), \;\;r>a
 
</math>
 
</math>
 
+
</center>
 
and
 
and
 
+
<center>
 
<math>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=-2}^{\infty}b_{mn}
 
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=-2}^{\infty}b_{mn}
 
I_{n}(\kappa_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r<a
 
I_{n}(\kappa_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r<a
 
</math>
 
</math>
 
+
</center>
 
where <math>a_{mn}</math> and <math>b_{mn}</math>
 
where <math>a_{mn}</math> and <math>b_{mn}</math>
 
are the coefficients of the potential in the open water and
 
are the coefficients of the potential in the open water and
Line 179: Line 179:
 
in displacement travelling in the positive <math>x</math>-direction.  
 
in displacement travelling in the positive <math>x</math>-direction.  
 
The incident potential can therefore be written as
 
The incident potential can therefore be written as
 
+
<center>
 
<math>
 
<math>
 
\phi^{\mathrm{I}}  =\frac{A}{i\sqrt{\alpha}}e^{k_{0}x}\phi_{0}\left(
 
\phi^{\mathrm{I}}  =\frac{A}{i\sqrt{\alpha}}e^{k_{0}x}\phi_{0}\left(
Line 186: Line 186:
 
e^{i n \theta}
 
e^{i n \theta}
 
</math>
 
</math>
 
+
</center>
 
where <math>e_{n}=A/\left(i\sqrt{\alpha}\right)</math>
 
where <math>e_{n}=A/\left(i\sqrt{\alpha}\right)</math>
 
(we retain the dependence on <math>n</math> for situations
 
(we retain the dependence on <math>n</math> for situations
Line 196: Line 196:
 
considered. The vertical force and bending moment must vanish, which can be
 
considered. The vertical force and bending moment must vanish, which can be
 
written as  
 
written as  
 
+
<center>
 
<math>
 
<math>
 
\left[\bar{\Delta}-\frac{1-\nu}{r}\left(\frac{\partial}{\partial r}
 
\left[\bar{\Delta}-\frac{1-\nu}{r}\left(\frac{\partial}{\partial r}
Line 202: Line 202:
 
w=0\,\,\,(3)
 
w=0\,\,\,(3)
 
</math>
 
</math>
 
+
</center>
 
and
 
and
 
+
<center>
 
<math>
 
<math>
 
\left[  \frac{\partial}{\partial r}\bar{\Delta}-\frac{1-\nu}{r^{2}}\left(
 
\left[  \frac{\partial}{\partial r}\bar{\Delta}-\frac{1-\nu}{r^{2}}\left(
Line 210: Line 210:
 
{\partial\theta^{2}}\right]  w=0 \,\,\,(4)
 
{\partial\theta^{2}}\right]  w=0 \,\,\,(4)
 
</math>
 
</math>
 
+
</center>
 
where <math>w</math> is the time-independent surface
 
where <math>w</math> is the time-independent surface
 
displacement, <math>\nu</math> is Poisson's ratio, and <math>\bar{\Delta}</math> is the
 
displacement, <math>\nu</math> is Poisson's ratio, and <math>\bar{\Delta}</math> is the
 
polar coordinate Laplacian
 
polar coordinate Laplacian
 
+
<center>
 
<math>
 
<math>
 
\bar{\Delta}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial
 
\bar{\Delta}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial
 
}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial\theta^{2}}
 
}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial\theta^{2}}
 
</math>
 
</math>
 
+
</center>
 
== Displacement of the plate ==
 
== Displacement of the plate ==
  
 
The surface displacement and the water velocity potential at
 
The surface displacement and the water velocity potential at
 
the water surface are linked through the kinematic boundary condition
 
the water surface are linked through the kinematic boundary condition
 
+
<center>
 
<math>
 
<math>
 
\phi_{z}=-i\sqrt{\alpha}w,\,\,\,z=0
 
\phi_{z}=-i\sqrt{\alpha}w,\,\,\,z=0
 
</math>
 
</math>
 
+
</center>
 
From equations (\ref{bvp_plate}) the potential and the surface
 
From equations (\ref{bvp_plate}) the potential and the surface
 
displacement are therefore related by
 
displacement are therefore related by
 
+
<center>
 
<math>
 
<math>
 
w=i\sqrt{\alpha}\phi,\quad r>a
 
w=i\sqrt{\alpha}\phi,\quad r>a
 
</math>
 
</math>
 
+
</center>
 
and
 
and
 
+
<center>
 
<math>
 
<math>
 
(\beta\bar{\Delta}^{2}+1-\alpha\gamma)w=i\sqrt{\alpha}\phi,\quad r<a
 
(\beta\bar{\Delta}^{2}+1-\alpha\gamma)w=i\sqrt{\alpha}\phi,\quad r<a
 
</math>
 
</math>
 
+
</center>
 
The surface displacement can also be expanded in eigenfunctions
 
The surface displacement can also be expanded in eigenfunctions
 
as
 
as
Line 260: Line 260:
  
 
using the fact that
 
using the fact that
 
+
<center>
 
<math>
 
<math>
 
\bar{\Delta}\left(  I_{n}(\kappa_{m}r)e^{i n\theta}\right)  =\kappa_{m}
 
\bar{\Delta}\left(  I_{n}(\kappa_{m}r)e^{i n\theta}\right)  =\kappa_{m}
 
^{2}I_{n}(\kappa_{m}r)e^{i n\theta}\,\,\,(5)
 
^{2}I_{n}(\kappa_{m}r)e^{i n\theta}\,\,\,(5)
 
</math>
 
</math>
 
+
</center>
 
==An infinite dimensional system of equations==
 
==An infinite dimensional system of equations==
  
Line 272: Line 272:
 
using (5). Since the angular modes are uncoupled the
 
using (5). Since the angular modes are uncoupled the
 
conditions apply to each mode, giving
 
conditions apply to each mode, giving
 
+
<center>
 
<math>
 
<math>
 
\sum_{m=-2}^{\infty}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
 
\sum_{m=-2}^{\infty}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
Line 279: Line 279:
 
\right) =0\,\,\,(6)
 
\right) =0\,\,\,(6)
 
</math>
 
</math>
 
+
</center>
 +
<center>
 
<math>
 
<math>
 
\sum_{m=-2}^{\infty}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
 
\sum_{m=-2}^{\infty}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
Line 287: Line 288:
 
=0\,\,\,(7)
 
=0\,\,\,(7)
 
</math>
 
</math>
 
+
</center>
 
The potential and its derivative must be continuous across the
 
The potential and its derivative must be continuous across the
 
transition from open water to the plate covered region. Therefore, the
 
transition from open water to the plate covered region. Therefore, the
 
potentials and their derivatives at <math>r=a</math> have to be equal.
 
potentials and their derivatives at <math>r=a</math> have to be equal.
 
Again we know that this must be true for each angle and we obtain
 
Again we know that this must be true for each angle and we obtain
 
+
<center>
 
<math>
 
<math>
 
e_{n}I_{n}(k_{0}a)\phi_{0}\left(  z\right) + \sum_{m=0}^{\infty}
 
e_{n}I_{n}(k_{0}a)\phi_{0}\left(  z\right) + \sum_{m=0}^{\infty}
Line 298: Line 299:
 
=\sum_{m=-2}^{\infty}b_{mn}I_{n}(\kappa_{m}a)\psi_{m}(z)
 
=\sum_{m=-2}^{\infty}b_{mn}I_{n}(\kappa_{m}a)\psi_{m}(z)
 
</math>
 
</math>
 
+
</center>
 
and
 
and
 
+
<center>
 
<math>
 
<math>
 
  e_{n}k_{0}I_{n}^{\prime}(k_{0}a)\phi_{0}\left(  z\right)  +\sum
 
  e_{n}k_{0}I_{n}^{\prime}(k_{0}a)\phi_{0}\left(  z\right)  +\sum
Line 307: Line 308:
 
_{m}(z)
 
_{m}(z)
 
</math>
 
</math>
 
+
</center>
 
for each <math>n</math>.
 
for each <math>n</math>.
 
We solve these equations by multiplying both equations by
 
We solve these equations by multiplying both equations by
 
<math>\phi_{l}(z)</math> and integrating from <math>-H</math> to <math>0</math> to obtain:
 
<math>\phi_{l}(z)</math> and integrating from <math>-H</math> to <math>0</math> to obtain:
 
+
<center>
 
<math>
 
<math>
 
e_{n}I_{n}(k_{0}a)A_{0}\delta_{0l}+a_{ln}K_{n}(k_{l}a)A_{l}
 
e_{n}I_{n}(k_{0}a)A_{0}\delta_{0l}+a_{ln}K_{n}(k_{l}a)A_{l}
 
=\sum_{m=-2}^{\infty}b_{mn}I_{n}(\kappa_{m}a)B_{ml} \,\,\,(8)
 
=\sum_{m=-2}^{\infty}b_{mn}I_{n}(\kappa_{m}a)B_{ml} \,\,\,(8)
 
</math>
 
</math>
 
+
</center>
 
and
 
and
 
+
<center>
 
<math>
 
<math>
 
e_{n}k_{0}I_{n}^{\prime}(k_{0}a)A_{0}\delta_{0l}+a_{ln}k_{l}K_{n}^{\prime
 
e_{n}k_{0}I_{n}^{\prime}(k_{0}a)A_{0}\delta_{0l}+a_{ln}k_{l}K_{n}^{\prime
Line 325: Line 326:
 
a)B_{ml} \,\,\,(9)
 
a)B_{ml} \,\,\,(9)
 
</math>
 
</math>
 
+
</center>
 
Equation (8) can be solved for the open water
 
Equation (8) can be solved for the open water
 
coefficients <math>a_{mn}</math>
 
coefficients <math>a_{mn}</math>
 
+
<center>
 
<math>
 
<math>
 
a_{ln}=-e_{n}\frac{I_{n}(k_{0}a)}{K_{n}(k_{0}a)}\delta_{0l}+\sum
 
a_{ln}=-e_{n}\frac{I_{n}(k_{0}a)}{K_{n}(k_{0}a)}\delta_{0l}+\sum
 
_{m=-2}^{\infty}b_{mn}\frac{I_{n}(\kappa_{m}a)B_{ml}}{K_{n}(k_{l}a)A_{l}}
 
_{m=-2}^{\infty}b_{mn}\frac{I_{n}(\kappa_{m}a)B_{ml}}{K_{n}(k_{l}a)A_{l}}
 
</math>
 
</math>
 
+
</center>
 
which can then be substituted into equation
 
which can then be substituted into equation
 
(9) to give us
 
(9) to give us
 
+
<center>
 
<math>
 
<math>
 
\left(  k_{0}I_{n}^{\prime}(k_{0}a)-k_{0}\frac{K_{n}^{\prime}(k_{0}
 
\left(  k_{0}I_{n}^{\prime}(k_{0}a)-k_{0}\frac{K_{n}^{\prime}(k_{0}
Line 344: Line 345:
 
_{m}a)\right)  B_{ml}b_{mn}\,\,\,(10)
 
_{m}a)\right)  B_{ml}b_{mn}\,\,\,(10)
 
</math>
 
</math>
 
+
</center>
 
for each <math>n</math>.
 
for each <math>n</math>.
 
Together with equations (6) and (7)
 
Together with equations (6) and (7)
Line 356: Line 357:
 
be <math>M</math>. We also set the angular expansion to be from  
 
be <math>M</math>. We also set the angular expansion to be from  
 
<math>n=-N</math> to <math>N</math>. This gives us
 
<math>n=-N</math> to <math>N</math>. This gives us
 
+
<center>
 
<math>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-N}^{N}\sum_{m=0}^{M}a_{mn}K_{n}(k_{m}r)e^{i
 
\phi(r,\theta,z)=\sum_{n=-N}^{N}\sum_{m=0}^{M}a_{mn}K_{n}(k_{m}r)e^{i
 
n\theta }\phi_{m}(z), \;\;r>a  
 
n\theta }\phi_{m}(z), \;\;r>a  
 
</math>
 
</math>
 
+
</center>
 
and
 
and
 
+
<center>
 
<math>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-N}^{N}\sum_{m=-2}^{M}b_{mn}I_{n}(\kappa
 
\phi(r,\theta,z)=\sum_{n=-N}^{N}\sum_{m=-2}^{M}b_{mn}I_{n}(\kappa
 
_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r<a  
 
_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r<a  
 
</math>
 
</math>
 
+
</center>
 
Since <math>l</math> is an integer with <math>0\leq l\leq
 
Since <math>l</math> is an integer with <math>0\leq l\leq
 
M</math> this leads to a system of <math>M+1</math> equations.
 
M</math> this leads to a system of <math>M+1</math> equations.
Line 374: Line 375:
 
are obtained from the boundary conditions for the free plate (6)
 
are obtained from the boundary conditions for the free plate (6)
 
and (7). The equations to be solved for each <math>n</math> are
 
and (7). The equations to be solved for each <math>n</math> are
 
+
<center>
 
<math>
 
<math>
 
\left(  k_{0}I_{n}^{\prime}(k_{0}a)-k_{0}\frac{K_{n}^{\prime}(k_{0}
 
\left(  k_{0}I_{n}^{\prime}(k_{0}a)-k_{0}\frac{K_{n}^{\prime}(k_{0}
Line 382: Line 383:
 
B_{ml}b_{mn}  
 
B_{ml}b_{mn}  
 
</math>
 
</math>
 
+
</center>
 +
<center>
 
<math>
 
<math>
 
\sum_{m=-2}^{M}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
 
\sum_{m=-2}^{M}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
Line 389: Line 391:
 
\right) =0
 
\right) =0
 
</math>
 
</math>
 
+
</center>
 
and
 
and
 
+
<center>
 
<math>
 
<math>
 
\sum_{m=-2}^{M}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
 
\sum_{m=-2}^{M}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
Line 398: Line 400:
 
_{m}a)\right)  \right) =0  
 
_{m}a)\right)  \right) =0  
 
</math>
 
</math>
 
+
</center>
 
It should be noted that the solutions for positive and negative
 
It should be noted that the solutions for positive and negative
 
<math>n</math> are identical so that they do not both need to be
 
<math>n</math> are identical so that they do not both need to be

Revision as of 02:06, 4 September 2006

Introduction

We show here a solution for a Floating Elastic Plate on Finite Depth water based on Peter, Meylan and Chung 2004. A solution for Shallow Depth was given in Zilman and Miloh 2000 and we will also show this.

Governing Equations

We begin with the Frequency Domain Problem for a Floating Elastic Plate in the non-dimensional form of Tayler 1986 (Dispersion Relation for a Floating Elastic Plate) We will use a cylindrical coordinate system, [math]\displaystyle{ (r,\theta,z) }[/math], assumed to have its origin at the centre of the circular plate which has radius [math]\displaystyle{ a }[/math]. The water is assumed to have constant finite depth [math]\displaystyle{ H }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-H }[/math]. The boundary value problem can therefore be expressed as

[math]\displaystyle{ \Delta\phi=0, \,\, -H\lt z\lt 0, }[/math]

[math]\displaystyle{ \phi_{z}=0, \,\, z=-H, }[/math]

[math]\displaystyle{ \phi_{z}=\alpha\phi, \,\, z=0,\,r\gt a, \lt /center\gt }[/math]

[math]\displaystyle{ (\beta\Delta^{2}+1-\alpha\gamma)\phi_{z}=\alpha\phi, \,\, z=0,\,r\lt a }[/math]

where the constants [math]\displaystyle{ \beta }[/math] and [math]\displaystyle{ \gamma }[/math] are given by

[math]\displaystyle{ \beta=\frac{D}{\rho\,L^{4}g}, \gamma=\frac{\rho_{i}h}{\rho\,L} }[/math]

and [math]\displaystyle{ \rho_{i} }[/math] is the density of the plate. We must also apply the edge conditions for the plate and the Sommerfeld Radiation Condition as [math]\displaystyle{ r\rightarrow\infty }[/math]. The subscript [math]\displaystyle{ z }[/math] denotes the derivative in [math]\displaystyle{ z }[/math]-direction.

Solution Method

Separation of variables

We now separate variables, noting that since the problem has circular symmetry we can write the potential as

[math]\displaystyle{ \phi(r,\theta,z)=\zeta(z)\sum_{n=-\infty}^{\infty}\rho_{n}(r)e^{i n \theta} }[/math]

Applying Laplace's equation we obtain

[math]\displaystyle{ \zeta_{zz}+\mu^{2}\zeta=0 }[/math]

so that:

[math]\displaystyle{ \zeta=\cos\mu(z+H) }[/math]

where the separation constant [math]\displaystyle{ \mu^{2} }[/math] must satisfy the Dispersion Relation for a Free Surface

[math]\displaystyle{ k\tan\left( kH\right) =-\alpha,\quad r\gt a\,\,\,(1) }[/math]

and the Dispersion Relation for a Floating Elastic Plate

[math]\displaystyle{ \kappa\tan(\kappa H)=\frac{-\alpha}{\beta\kappa^{4}+1-\alpha\gamma},\quad r\lt a \,\,\,(2) }[/math]

Note that we have set [math]\displaystyle{ \mu=k }[/math] under the free surface and [math]\displaystyle{ \mu=\kappa }[/math] under the plate. We denote the positive imaginary solution of (1) by [math]\displaystyle{ k_{0} }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} }[/math], [math]\displaystyle{ m\geq1 }[/math]. The solutions of (2) will be denoted by [math]\displaystyle{ \kappa_{m} }[/math], [math]\displaystyle{ m\geq-2 }[/math]. The fully complex solutions with positive imaginary part are [math]\displaystyle{ \kappa_{-2} }[/math] and [math]\displaystyle{ \kappa_{-1} }[/math] (where [math]\displaystyle{ \kappa_{-1}=\overline{\kappa_{-2}} }[/math]), the negative imaginary solution is [math]\displaystyle{ \kappa_{0} }[/math] and the positive real solutions are [math]\displaystyle{ \kappa_{m} }[/math], [math]\displaystyle{ m\geq1 }[/math]. We define

[math]\displaystyle{ \phi_{m}\left( z\right) =\frac{\cos k_{m}(z+H)}{\cos k_{m}H},\quad m\geq0 }[/math]

as the vertical eigenfunction of the potential in the open water region and

[math]\displaystyle{ \psi_{m}\left( z\right) =\frac{\cos\kappa_{m}(z+H)}{\cos\kappa_{m}H},\quad m\geq-2 }[/math]

as the vertical eigenfunction of the potential in the plate covered region. For later reference, we note that:

[math]\displaystyle{ \int\nolimits_{-H}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn} }[/math]

where

[math]\displaystyle{ A_{m}=\frac{1}{2}\left( \frac{\cos k_{m}H\sin k_{m}H+k_{m}H}{k_{m}\cos ^{2}k_{m}H}\right) }[/math]

and

[math]\displaystyle{ \int\nolimits_{-H}^{0}\phi_{n}(z)\psi_{m}(z) d z=B_{mn} }[/math]

where

[math]\displaystyle{ B_{mn}=\frac{k_{n}\sin k_{n}H\cos\kappa_{m}H-\kappa_{m}\cos k_{n}H\sin \kappa_{m}H}{\left( \cos k_{n}H\cos\kappa_{m}H\right) \left( k_{n} ^{2}-\kappa_{m}^{2}\right) } \lt /center\gt }[/math]

We now solve for the function [math]\displaystyle{ \rho_{n}(r) }[/math]. Using Laplace's equation in polar coordinates we obtain

[math]\displaystyle{ \frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}r^{2}}+\frac{1}{r} \frac{\mathrm{d}\rho_{n}}{\mathrm{d}r}-\left( \frac{n^{2}}{r^{2}}+\mu^{2}\right) \rho_{n}=0 }[/math]

where [math]\displaystyle{ \mu }[/math] is [math]\displaystyle{ k_{m} }[/math] or [math]\displaystyle{ \kappa_{m}, }[/math] depending on whether [math]\displaystyle{ r }[/math] is greater or less than [math]\displaystyle{ a }[/math]. We can convert this equation to the standard form by substituting [math]\displaystyle{ y=\mu r }[/math] to obtain

[math]\displaystyle{ y^{2}\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}y^{2}}+y\frac{\mathrm{d}\rho_{n} }{\rm{d}y}-(n^{2}+y^{2})\rho_{n}=0 }[/math]

The solution of this equation is a linear combination of the modified Bessel functions of order [math]\displaystyle{ n }[/math], [math]\displaystyle{ I_{n}(y) }[/math] and [math]\displaystyle{ K_{n}(y) }[/math] Abramowitz and Stegun 1964. Since the solution must be bounded we know that under the plate the solution will be a linear combination of [math]\displaystyle{ I_{n}(y) }[/math] while outside the plate the solution will be a linear combination of [math]\displaystyle{ K_{n}(y) }[/math]. Therefore the potential can be expanded as

[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n} (k_{m}r)e^{i n\theta}\phi_{m}(z), \;\;r\gt a }[/math]

and

[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=-2}^{\infty}b_{mn} I_{n}(\kappa_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r\lt a }[/math]

where [math]\displaystyle{ a_{mn} }[/math] and [math]\displaystyle{ b_{mn} }[/math] are the coefficients of the potential in the open water and the plate covered region respectively.

Incident potential

The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. The incident potential can therefore be written as

[math]\displaystyle{ \phi^{\mathrm{I}} =\frac{A}{i\sqrt{\alpha}}e^{k_{0}x}\phi_{0}\left( z\right) =\sum\limits_{n=-\infty}^{\infty}e_{n}I_{n}(k_{0}r)\phi_{0}\left(z\right) e^{i n \theta} }[/math]

where [math]\displaystyle{ e_{n}=A/\left(i\sqrt{\alpha}\right) }[/math] (we retain the dependence on [math]\displaystyle{ n }[/math] for situations where the incident potential might take another form).

Boundary conditions

The boundary conditions for the plate also have to be considered. The vertical force and bending moment must vanish, which can be written as

[math]\displaystyle{ \left[\bar{\Delta}-\frac{1-\nu}{r}\left(\frac{\partial}{\partial r} +\frac{1}{r}\frac{\partial^{2}}{\partial\theta^{2}}\right)\right] w=0\,\,\,(3) }[/math]

and

[math]\displaystyle{ \left[ \frac{\partial}{\partial r}\bar{\Delta}-\frac{1-\nu}{r^{2}}\left( \frac{\partial}{\partial r}+\frac{1}{r}\right) \frac{\partial^{2}} {\partial\theta^{2}}\right] w=0 \,\,\,(4) }[/math]

where [math]\displaystyle{ w }[/math] is the time-independent surface displacement, [math]\displaystyle{ \nu }[/math] is Poisson's ratio, and [math]\displaystyle{ \bar{\Delta} }[/math] is the polar coordinate Laplacian

[math]\displaystyle{ \bar{\Delta}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial }{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial\theta^{2}} }[/math]

Displacement of the plate

The surface displacement and the water velocity potential at the water surface are linked through the kinematic boundary condition

[math]\displaystyle{ \phi_{z}=-i\sqrt{\alpha}w,\,\,\,z=0 }[/math]

From equations (\ref{bvp_plate}) the potential and the surface displacement are therefore related by

[math]\displaystyle{ w=i\sqrt{\alpha}\phi,\quad r\gt a }[/math]

and

[math]\displaystyle{ (\beta\bar{\Delta}^{2}+1-\alpha\gamma)w=i\sqrt{\alpha}\phi,\quad r\lt a }[/math]

The surface displacement can also be expanded in eigenfunctions as

[math]\displaystyle{ w(r,\theta)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}i\sqrt{\alpha} a_{mn}K_{n}(k_{m}r)e^{i n\theta},\;\;r\gt a }[/math]

and:

[math]\displaystyle{ w(r,\theta)= \sum_{n=-\infty}^{\infty}\sum_{m=-2}^{\infty}i\sqrt{\alpha}(\beta\kappa _{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}I_{n}(\kappa_{m}r)e^{i n\theta},\; r\lt a }[/math]

using the fact that

[math]\displaystyle{ \bar{\Delta}\left( I_{n}(\kappa_{m}r)e^{i n\theta}\right) =\kappa_{m} ^{2}I_{n}(\kappa_{m}r)e^{i n\theta}\,\,\,(5) }[/math]

An infinite dimensional system of equations

The boundary conditions (3) and (4) can be expressed in terms of the potential using (5). Since the angular modes are uncoupled the conditions apply to each mode, giving

[math]\displaystyle{ \sum_{m=-2}^{\infty}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn} \left(\kappa_{m}^{2}I_{n}(\kappa_{m}a)-\frac{1-\nu}{a}\left(\kappa _{m}I_{n}^{\prime}(\kappa_{m}a)-\frac{n^{2}}{a}I_{n}(\kappa_{m}a)\right) \right) =0\,\,\,(6) }[/math]

[math]\displaystyle{ \sum_{m=-2}^{\infty}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn} \left( \kappa_{m}^{3}I_{n}^{\prime}(\kappa_{m}a)+n^{2}\frac{1-\nu}{a^{2} }\left( \kappa_{m}I_{n}^{\prime}(\kappa_{m}a)+\frac{1}{a}I_{n}(\kappa _{m}a)\right) \right) =0\,\,\,(7) }[/math]

The potential and its derivative must be continuous across the transition from open water to the plate covered region. Therefore, the potentials and their derivatives at [math]\displaystyle{ r=a }[/math] have to be equal. Again we know that this must be true for each angle and we obtain

[math]\displaystyle{ e_{n}I_{n}(k_{0}a)\phi_{0}\left( z\right) + \sum_{m=0}^{\infty} a_{mn} K_{n}(k_{m}a)\phi_{m}\left( z\right) =\sum_{m=-2}^{\infty}b_{mn}I_{n}(\kappa_{m}a)\psi_{m}(z) }[/math]

and

[math]\displaystyle{ e_{n}k_{0}I_{n}^{\prime}(k_{0}a)\phi_{0}\left( z\right) +\sum _{m=0}^{\infty} a_{mn}k_{m}K_{n}^{\prime}(k_{m}a)\phi_{m}\left( z\right) =\sum_{m=-2}^{\infty}b_{mn}\kappa_{m}I_{n}^{\prime}(\kappa_{m}a)\psi _{m}(z) }[/math]

for each [math]\displaystyle{ n }[/math]. We solve these equations by multiplying both equations by [math]\displaystyle{ \phi_{l}(z) }[/math] and integrating from [math]\displaystyle{ -H }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:

[math]\displaystyle{ e_{n}I_{n}(k_{0}a)A_{0}\delta_{0l}+a_{ln}K_{n}(k_{l}a)A_{l} =\sum_{m=-2}^{\infty}b_{mn}I_{n}(\kappa_{m}a)B_{ml} \,\,\,(8) }[/math]

and

[math]\displaystyle{ e_{n}k_{0}I_{n}^{\prime}(k_{0}a)A_{0}\delta_{0l}+a_{ln}k_{l}K_{n}^{\prime }(k_{l}a)A_{l} =\sum_{m=-2}^{\infty}b_{mn}\kappa_{m}I_{n}^{\prime}(\kappa_{m} a)B_{ml} \,\,\,(9) }[/math]

Equation (8) can be solved for the open water coefficients [math]\displaystyle{ a_{mn} }[/math]

[math]\displaystyle{ a_{ln}=-e_{n}\frac{I_{n}(k_{0}a)}{K_{n}(k_{0}a)}\delta_{0l}+\sum _{m=-2}^{\infty}b_{mn}\frac{I_{n}(\kappa_{m}a)B_{ml}}{K_{n}(k_{l}a)A_{l}} }[/math]

which can then be substituted into equation (9) to give us

[math]\displaystyle{ \left( k_{0}I_{n}^{\prime}(k_{0}a)-k_{0}\frac{K_{n}^{\prime}(k_{0} a)}{K_{n}(k_{0}a)}I_{n}(k_{0}a)\right) e_{n}A_{0}\delta_{0l} =\sum_{m=-2}^{\infty}\left( \kappa_{m}I_{n}^{\prime}(\kappa_{m} a)-k_{l}\frac{K_{n}^{\prime}(k_{l}a)}{K_{n}(k_{l}a)}I_{n}(\kappa _{m}a)\right) B_{ml}b_{mn}\,\,\,(10) }[/math]

for each [math]\displaystyle{ n }[/math]. Together with equations (6) and (7) equation (10) gives the required equations to solve for the coefficients of the water velocity potential in the plate covered region.

Numerical Solution

To solve the system of equations (10) together with the boundary conditions (6 and 7) we set the upper limit of [math]\displaystyle{ l }[/math] to be [math]\displaystyle{ M }[/math]. We also set the angular expansion to be from [math]\displaystyle{ n=-N }[/math] to [math]\displaystyle{ N }[/math]. This gives us

[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-N}^{N}\sum_{m=0}^{M}a_{mn}K_{n}(k_{m}r)e^{i n\theta }\phi_{m}(z), \;\;r\gt a }[/math]

and

[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-N}^{N}\sum_{m=-2}^{M}b_{mn}I_{n}(\kappa _{m}r)e^{i n\theta}\psi_{m}(z), \;\;r\lt a }[/math]

Since [math]\displaystyle{ l }[/math] is an integer with [math]\displaystyle{ 0\leq l\leq M }[/math] this leads to a system of [math]\displaystyle{ M+1 }[/math] equations. The number of unknowns is [math]\displaystyle{ M+3 }[/math] and the two extra equations are obtained from the boundary conditions for the free plate (6) and (7). The equations to be solved for each [math]\displaystyle{ n }[/math] are

[math]\displaystyle{ \left( k_{0}I_{n}^{\prime}(k_{0}a)-k_{0}\frac{K_{n}^{\prime}(k_{0} a)}{K_{n}(k_{0}a)}I_{n}(k_{0}a)\right) e_{n}A_{0}\delta_{0l} =\sum_{m=-2}^{M}\left( \kappa_{m}I_{n}^{\prime}(\kappa_{m}a)-k_{l} \frac{K_{n}^{\prime}(k_{l}a)}{K_{n}(k_{l}a)}I_{n}(\kappa_{m}a)\right) B_{ml}b_{mn} }[/math]

[math]\displaystyle{ \sum_{m=-2}^{M}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn} \left( \kappa_{m}^{2}I_{n}(\kappa_{m}a)-\frac{1-\nu}{a}\left( \kappa _{m}I_{n}^{\prime}(\kappa_{m}a)-\frac{n^{2}}{a}I_{n}(\kappa_{m}a)\right) \right) =0 }[/math]

and

[math]\displaystyle{ \sum_{m=-2}^{M}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn} \left( \kappa_{m}^{3}I_{n}^{\prime}(\kappa_{m}a)+n^{2}\frac{1-\nu}{a^{2} }\left( \kappa_{m}I_{n}^{\prime}(\kappa_{m}a)+\frac{1}{a}I_{n}(\kappa _{m}a)\right) \right) =0 }[/math]

It should be noted that the solutions for positive and negative [math]\displaystyle{ n }[/math] are identical so that they do not both need to be calculated. There are some minor simplifications which are a consequence of this which are discussed in more detail in Zilman and Miloh 2000.

The Shallow Depth Theory of Zilman and Miloh 2000

The shallow water theory of Zilman and Miloh 2000 can be recovered by simply setting the depth shallow enough that the shallow water theory is valid and setting [math]\displaystyle{ M=0 }[/math]. If the shallow water theory is valid then the first three roots of the dispersion equation for the ice will be exactly the same roots found in the shallow water theory by solving the polynomial equation. The system of equations has four unknowns (three under the plate and one in the open water) exactly as for the theory of Zilman and Miloh 2000.

Numerical Results

Figure 1

We present solutions for a plate of radius [math]\displaystyle{ a=100 }[/math]. The wavelength is [math]\displaystyle{ \lambda=50 }[/math] (recall that [math]\displaystyle{ \alpha=2\pi/\lambda\tanh\left( 2\pi H/\lambda\right) }[/math]), [math]\displaystyle{ \beta=10^{5} }[/math] and [math]\displaystyle{ \gamma=0 }[/math]. We compare with the method presented in Meylan 2002 for an arbitrary shaped plate modified to compute the solution for finite depth. The circle is represented in this scheme by square panels which are arranged to, as nearly as possible, form a circular shape.

Figure 1 shows the real part (a and c) and imaginary part (b and d) of the displacement for depth [math]\displaystyle{ H=25 }[/math]. The number of points in the angular expansion is [math]\displaystyle{ N=16 }[/math]. The number of roots of the dispersion equation is [math]\displaystyle{ M=8 }[/math]. Plots (a) and (b) are calculated using the circular plate method described here. Plots (c) and (d) are calculated using an arbitrary shaped plate method, with the panels shown being the actual panels used in the calculation. We see the expected agreement between the two methods.


The table below shows the values of the coefficients [math]\displaystyle{ b_{mn} }[/math] for the case for previous case ([math]\displaystyle{ \lambda=50 }[/math], [math]\displaystyle{ a=100 }[/math], [math]\displaystyle{ \beta=10^5 }[/math], [math]\displaystyle{ \gamma=0 }[/math], and [math]\displaystyle{ H=25 }[/math]). The very rapid decay of the higher evanescent modes is apparent. This shows how efficient this method of solution is since only a small number of modes are required.

[math]\displaystyle{ b_{mn} }[/math] [math]\displaystyle{ n=0 }[/math] [math]\displaystyle{ n=1 }[/math] [math]\displaystyle{ n=2 }[/math] [math]\displaystyle{ n=3 }[/math]
[math]\displaystyle{ m=-2 }[/math] [math]\displaystyle{ 1.32 \!\times\!10^{-1}-9.71 \!\times\!10^{-1}i }[/math] [math]\displaystyle{ 6.85 \!\times\!10^{-1} -6.37 \!\times\!10^{-1}i }[/math] [math]\displaystyle{ 2.95 \!\times\!10^{-1}-1.12 \!\times\!10^{0}i }[/math] [math]\displaystyle{ 6.09 \!\times\!10^{-1} -4.95 \!\times\!10^{-1}i }[/math]
[math]\displaystyle{ m=-1 }[/math] [math]\displaystyle{ -6.38 \!\times\!10^{-5}+1.47 \!\times\!10^{-3}i }[/math] [math]\displaystyle{ -3.92 \!\times\!10^{-3} + 3.99 \!\times\!10^{-3}i }[/math] [math]\displaystyle{ 1.41 \!\times\!10^{-3}+2.82 \!\times\!10^{-3}i }[/math] [math]\displaystyle{ -4.28 \!\times\!10^{-3} +3.89 \!\times\!10^{-3}i }[/math]
[math]\displaystyle{ m=0 }[/math] [math]\displaystyle{ -3.29 \!\times\!10^{-4}+1.43 \!\times\!10^{-3}i }[/math] [math]\displaystyle{ 4.26 \!\times\!10^{-3} -3.62 \!\times\!10^{-3}i }[/math] [math]\displaystyle{ -2.62 \!\times\!10^{-3}+1.76 \!\times\!10^{-3}i }[/math] [math]\displaystyle{ 4.68 \!\times\!10^{-3} -3.39 \!\times\!10^{-3}i }[/math]
[math]\displaystyle{ m=1 }[/math] [math]\displaystyle{ 4.31 \!\times\!10^{-7}-3.18 \!\times\!10^{-6}i }[/math] [math]\displaystyle{ -6.64 \!\times\!10^{-6} -7.14 \!\times\!10^{-6}i }[/math] [math]\displaystyle{ 2.07 \!\times\!10^{-7}-7.89 \!\times\!10^{-7}i }[/math] [math]\displaystyle{ -6.30 \!\times\!10^{-6} -7.74 \!\times\!10^{-6}i }[/math]
[math]\displaystyle{ m=2 }[/math] [math]\displaystyle{ 6.79 \!\times\!10^{-13}-5.01 \!\times\!10^{-12}i }[/math] [math]\displaystyle{ -5.78 \!\times\!10^{-12}-6.21 \!\times\!10^{-12}i }[/math] [math]\displaystyle{ 8.87 \!\times\!10^{-13}-3.38 \!\times\!10^{-12}i }[/math] [math]\displaystyle{ -5.54 \!\times\!10^{-12}-6.81 \!\times\!10^{-12}i }[/math]
[math]\displaystyle{ m=3 }[/math] [math]\displaystyle{ 1.35 \!\times\!10^{-18}-9.95 \!\times\!10^{-18}i }[/math] [math]\displaystyle{ -9.69 \!\times\!10^{-18}-1.04 \!\times\!10^{-17}i }[/math] [math]\displaystyle{ 1.94 \!\times\!10^{-18}-7.39 \!\times\!10^{-18}i }[/math] [math]\displaystyle{ -9.37 \!\times\!10^{-18}-1.15 \!\times\!10^{-17}i }[/math]