Difference between revisions of "Eigenfunction Matching for a Semi-Infinite Floating Elastic Plate"

From WikiWaves
Jump to navigationJump to search
 
Line 2: Line 2:
  
 
We show here a solution for a semi-infinite [[:Category:Floating Elastic Plate|Floating Elastic Plate]] on [[Finite Depth]].  
 
We show here a solution for a semi-infinite [[:Category:Floating Elastic Plate|Floating Elastic Plate]] on [[Finite Depth]].  
THe problem was solved by A solution
+
THe problem was solved by  
for [[Shallow Depth]] was given in [[Zilman_Miloh_2000a|Zilman and Miloh 2000]] and we will also show this.
 
  
=Governing Equations=
+
[[Category:Eigenfunction Matching Method]]
 
 
We begin with the [[Frequency Domain Problem]] for a [[Floating Elastic Plate]]
 
in the non-dimensional form of [[Tayler_1986a|Tayler 1986]] ([[Dispersion Relation for a Floating Elastic Plate]])
 
We will use a cylindrical coordinate system, <math>(r,\theta,z)</math>,
 
assumed to have its origin at the centre of the circular
 
plate which has radius <math>a</math>. The water is assumed to have
 
constant finite depth <math>H</math> and the <math>z</math>-direction points vertically
 
upward with the water surface at <math>z=0</math> and the sea floor at <math>z=-H</math>. The
 
boundary value problem can therefore be expressed as
 
<center>
 
<math>
 
\Delta\phi=0, \,\, -H<z<0,
 
</math>
 
</center>
 
<center>
 
<math>
 
\phi_{z}=0, \,\, z=-H,
 
</math>
 
</center>
 
<center><math>
 
\phi_{z}=\alpha\phi, \,\, z=0,\,r>a,
 
</math></center>
 
<center>
 
<math>
 
(\beta\Delta^{2}+1-\alpha\gamma)\phi_{z}=\alpha\phi, \,\, z=0,\,r<a
 
</math>
 
</center>
 
where the constants <math>\beta</math> and <math>\gamma</math> are given by
 
<center>
 
<math>
 
\beta=\frac{D}{\rho\,L^{4}g}, \gamma=\frac{\rho_{i}h}{\rho\,L}
 
</math>
 
</center>
 
and <math>\rho_{i}</math> is the density of the plate. We
 
must also apply the edge conditions for the plate and the [[Sommerfeld Radiation Condition]]
 
as <math>r\rightarrow\infty</math>. The subscript <math>z</math>
 
denotes the derivative in <math>z</math>-direction.
 
 
 
=Solution Method=
 
 
 
== Separation of variables==
 
 
 
We now separate variables, noting that since the problem has
 
circular symmetry we can write the potential as
 
<center>
 
<math>
 
\phi(r,\theta,z)=\zeta(z)\sum_{n=-\infty}^{\infty}\rho_{n}(r)e^{i n \theta}
 
</math>
 
</center>
 
Applying Laplace's equation we obtain
 
<center>
 
<math>
 
\zeta_{zz}+\mu^{2}\zeta=0
 
</math>
 
</center>
 
so that:
 
<center>
 
<math>
 
\zeta=\cos\mu(z+H)
 
</math>
 
</center>
 
where the separation constant <math>\mu^{2}</math> must
 
satisfy the [[Dispersion Relation for a Free Surface]]
 
<center>
 
<math>
 
k\tan\left(  kH\right)  =-\alpha,\quad r>a\,\,\,(1)
 
</math>
 
</center>
 
and the [[Dispersion Relation for a Floating Elastic Plate]]
 
<center>
 
<math>
 
\kappa\tan(\kappa H)=\frac{-\alpha}{\beta\kappa^{4}+1-\alpha\gamma},\quad
 
r<a \,\,\,(2)
 
</math>
 
</center>
 
Note that we have set <math>\mu=k</math> under the free
 
surface and <math>\mu=\kappa</math> under the plate. We denote the
 
positive imaginary solution of (1) by <math>k_{0}</math> and
 
the positive real solutions by <math>k_{m}</math>, <math>m\geq1</math>. The solutions of
 
(2) will be denoted by 
 
<math>\kappa_{m}</math>, <math>m\geq-2</math>. The fully complex
 
solutions with positive imaginary part are <math>\kappa_{-2}</math> and
 
<math>\kappa_{-1}</math> (where <math>\kappa_{-1}=\overline{\kappa_{-2}}</math>),
 
the negative imaginary solution is <math>\kappa_{0}</math> and the positive real
 
solutions are <math>\kappa_{m}</math>, <math>m\geq1</math>. We define
 
<center>
 
<math>
 
\phi_{m}\left(  z\right)  =\frac{\cos k_{m}(z+H)}{\cos k_{m}H},\quad m\geq0
 
</math>
 
</center>
 
as the vertical eigenfunction of the potential in the open
 
water region and
 
<center>
 
<math>
 
\psi_{m}\left(  z\right)  =\frac{\cos\kappa_{m}(z+H)}{\cos\kappa_{m}H},\quad
 
m\geq-2
 
</math>
 
</center>
 
as the vertical eigenfunction of the potential in the plate
 
covered region. For later reference, we note that:
 
<center>
 
<math>
 
\int\nolimits_{-H}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn}
 
</math>
 
</center>
 
where
 
<center>
 
<math>
 
A_{m}=\frac{1}{2}\left(  \frac{\cos k_{m}H\sin k_{m}H+k_{m}H}{k_{m}\cos
 
^{2}k_{m}H}\right)
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\int\nolimits_{-H}^{0}\phi_{n}(z)\psi_{m}(z) d z=B_{mn}
 
</math>
 
</center>
 
where
 
<center><math>
 
B_{mn}=\frac{k_{n}\sin k_{n}H\cos\kappa_{m}H-\kappa_{m}\cos k_{n}H\sin
 
\kappa_{m}H}{\left(  \cos k_{n}H\cos\kappa_{m}H\right)  \left(  k_{n}
 
^{2}-\kappa_{m}^{2}\right)  }
 
</math></center>
 
 
 
We now solve for the function <math>\rho_{n}(r)</math>.
 
Using Laplace's equation in polar coordinates we obtain
 
<center>
 
<math>
 
\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}r^{2}}+\frac{1}{r}
 
\frac{\mathrm{d}\rho_{n}}{\mathrm{d}r}-\left(
 
\frac{n^{2}}{r^{2}}+\mu^{2}\right)  \rho_{n}=0
 
</math>
 
</center>
 
where <math>\mu</math> is <math>k_{m}</math> or
 
<math>\kappa_{m},</math> depending on whether <math>r</math> is
 
greater or less than <math>a</math>. We can convert this equation to the
 
standard form by substituting <math>y=\mu r</math> to obtain
 
<center>
 
<math>
 
y^{2}\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}y^{2}}+y\frac{\mathrm{d}\rho_{n}
 
}{\rm{d}y}-(n^{2}+y^{2})\rho_{n}=0
 
</math>
 
</center>
 
The solution of this equation is a linear combination of the
 
modified Bessel functions of order <math>n</math>, <math>I_{n}(y)</math> and
 
<math>K_{n}(y)</math> [[Abramowitz and Stegun 1964]]. Since the solution must be bounded
 
we know that under the plate the solution will be a linear combination of
 
<math>I_{n}(y)</math> while outside the plate the solution will be a
 
linear combination of <math>K_{n}(y)</math>. Therefore the potential can
 
be expanded as
 
<center>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n}
 
(k_{m}r)e^{i n\theta}\phi_{m}(z), \;\;r>a
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=-2}^{\infty}b_{mn}
 
I_{n}(\kappa_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r<a
 
</math>
 
</center>
 
where <math>a_{mn}</math> and <math>b_{mn}</math>
 
are the coefficients of the potential in the open water and
 
the plate covered region respectively.
 
 
 
==Incident potential==
 
 
 
The incident potential is a wave of amplitude <math>A</math>
 
in displacement travelling in the positive <math>x</math>-direction.
 
The incident potential can therefore be written as
 
<center>
 
<math>
 
\phi^{\mathrm{I}}  =\frac{A}{i\sqrt{\alpha}}e^{k_{0}x}\phi_{0}\left(
 
z\right)
 
=\sum\limits_{n=-\infty}^{\infty}e_{n}I_{n}(k_{0}r)\phi_{0}\left(z\right)
 
e^{i n \theta}
 
</math>
 
</center>
 
where <math>e_{n}=A/\left(i\sqrt{\alpha}\right)</math>
 
(we retain the dependence on <math>n</math> for situations
 
where the incident potential might take another form).
 
 
 
==Boundary conditions==
 
 
 
The boundary conditions for the plate also have to be
 
considered. The vertical force and bending moment must vanish, which can be
 
written as
 
<center>
 
<math>
 
\left[\bar{\Delta}-\frac{1-\nu}{r}\left(\frac{\partial}{\partial r}
 
+\frac{1}{r}\frac{\partial^{2}}{\partial\theta^{2}}\right)\right]
 
w=0\,\,\,(3)
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\left[  \frac{\partial}{\partial r}\bar{\Delta}-\frac{1-\nu}{r^{2}}\left(
 
\frac{\partial}{\partial r}+\frac{1}{r}\right)  \frac{\partial^{2}}
 
{\partial\theta^{2}}\right]  w=0 \,\,\,(4)
 
</math>
 
</center>
 
where <math>w</math> is the time-independent surface
 
displacement, <math>\nu</math> is Poisson's ratio, and <math>\bar{\Delta}</math> is the
 
polar coordinate Laplacian
 
<center>
 
<math>
 
\bar{\Delta}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial
 
}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial\theta^{2}}
 
</math>
 
</center>
 
== Displacement of the plate ==
 
 
 
The surface displacement and the water velocity potential at
 
the water surface are linked through the kinematic boundary condition
 
<center>
 
<math>
 
\phi_{z}=-i\sqrt{\alpha}w,\,\,\,z=0
 
</math>
 
</center>
 
From equations (\ref{bvp_plate}) the potential and the surface
 
displacement are therefore related by
 
<center>
 
<math>
 
w=i\sqrt{\alpha}\phi,\quad r>a
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
(\beta\bar{\Delta}^{2}+1-\alpha\gamma)w=i\sqrt{\alpha}\phi,\quad r<a
 
</math>
 
</center>
 
The surface displacement can also be expanded in eigenfunctions
 
as
 
<center>
 
<math>
 
w(r,\theta)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}i\sqrt{\alpha}
 
a_{mn}K_{n}(k_{m}r)e^{i n\theta},\;\;r>a
 
</math>
 
</center>
 
and:
 
<center>
 
<math>
 
w(r,\theta)=
 
\sum_{n=-\infty}^{\infty}\sum_{m=-2}^{\infty}i\sqrt{\alpha}(\beta\kappa
 
_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}I_{n}(\kappa_{m}r)e^{i
 
n\theta},\; r<a
 
</math>
 
</center>
 
using the fact that
 
<center>
 
<math>
 
\bar{\Delta}\left(  I_{n}(\kappa_{m}r)e^{i n\theta}\right)  =\kappa_{m}
 
^{2}I_{n}(\kappa_{m}r)e^{i n\theta}\,\,\,(5)
 
</math>
 
</center>
 
 
 
==An infinite dimensional system of equations==
 
 
 
The boundary conditions (3) and
 
(4) can be expressed in terms of the potential
 
using (5). Since the angular modes are uncoupled the
 
conditions apply to each mode, giving
 
<center>
 
<math>
 
\sum_{m=-2}^{\infty}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
 
\left(\kappa_{m}^{2}I_{n}(\kappa_{m}a)-\frac{1-\nu}{a}\left(\kappa
 
_{m}I_{n}^{\prime}(\kappa_{m}a)-\frac{n^{2}}{a}I_{n}(\kappa_{m}a)\right)
 
\right) =0\,\,\,(6)
 
</math>
 
</center>
 
<center>
 
<math>
 
\sum_{m=-2}^{\infty}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
 
\left(  \kappa_{m}^{3}I_{n}^{\prime}(\kappa_{m}a)+n^{2}\frac{1-\nu}{a^{2}
 
}\left(  \kappa_{m}I_{n}^{\prime}(\kappa_{m}a)+\frac{1}{a}I_{n}(\kappa
 
_{m}a)\right)  \right)
 
=0\,\,\,(7)
 
</math>
 
</center>
 
The potential and its derivative must be continuous across the
 
transition from open water to the plate covered region. Therefore, the
 
potentials and their derivatives at <math>r=a</math> have to be equal.
 
Again we know that this must be true for each angle and we obtain
 
<center>
 
<math>
 
e_{n}I_{n}(k_{0}a)\phi_{0}\left(  z\right) + \sum_{m=0}^{\infty}
 
a_{mn} K_{n}(k_{m}a)\phi_{m}\left(  z\right)
 
=\sum_{m=-2}^{\infty}b_{mn}I_{n}(\kappa_{m}a)\psi_{m}(z)
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
e_{n}k_{0}I_{n}^{\prime}(k_{0}a)\phi_{0}\left(  z\right)  +\sum
 
_{m=0}^{\infty} a_{mn}k_{m}K_{n}^{\prime}(k_{m}a)\phi_{m}\left(  z\right)
 
=\sum_{m=-2}^{\infty}b_{mn}\kappa_{m}I_{n}^{\prime}(\kappa_{m}a)\psi
 
_{m}(z)
 
</math>
 
</center>
 
for each <math>n</math>.
 
We solve these equations by multiplying both equations by
 
<math>\phi_{l}(z)</math> and integrating from <math>-H</math> to <math>0</math> to obtain:
 
<center>
 
<math>
 
e_{n}I_{n}(k_{0}a)A_{0}\delta_{0l}+a_{ln}K_{n}(k_{l}a)A_{l}
 
=\sum_{m=-2}^{\infty}b_{mn}I_{n}(\kappa_{m}a)B_{ml} \,\,\,(8)
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
e_{n}k_{0}I_{n}^{\prime}(k_{0}a)A_{0}\delta_{0l}+a_{ln}k_{l}K_{n}^{\prime
 
}(k_{l}a)A_{l}
 
=\sum_{m=-2}^{\infty}b_{mn}\kappa_{m}I_{n}^{\prime}(\kappa_{m}
 
a)B_{ml} \,\,\,(9)
 
</math>
 
</center>
 
Equation (8) can be solved for the open water
 
coefficients <math>a_{mn}</math>
 
<center>
 
<math>
 
a_{ln}=-e_{n}\frac{I_{n}(k_{0}a)}{K_{n}(k_{0}a)}\delta_{0l}+\sum
 
_{m=-2}^{\infty}b_{mn}\frac{I_{n}(\kappa_{m}a)B_{ml}}{K_{n}(k_{l}a)A_{l}}
 
</math>
 
</center>
 
which can then be substituted into equation
 
(9) to give us
 
<center>
 
<math>
 
\left(  k_{0}I_{n}^{\prime}(k_{0}a)-k_{0}\frac{K_{n}^{\prime}(k_{0}
 
a)}{K_{n}(k_{0}a)}I_{n}(k_{0}a)\right)  e_{n}A_{0}\delta_{0l}
 
=\sum_{m=-2}^{\infty}\left(  \kappa_{m}I_{n}^{\prime}(\kappa_{m}
 
a)-k_{l}\frac{K_{n}^{\prime}(k_{l}a)}{K_{n}(k_{l}a)}I_{n}(\kappa
 
_{m}a)\right)  B_{ml}b_{mn}\,\,\,(10)
 
</math>
 
</center>
 
for each <math>n</math>.
 
Together with equations (6) and (7)
 
equation (10) gives the required equations to solve for the
 
coefficients of the water velocity potential in the plate covered region.
 
 
 
=Numerical Solution=
 
 
 
To solve the system of equations (10) together
 
with the boundary conditions (6 and 7) we set the upper limit of <math>l</math> to
 
be <math>M</math>. We also set the angular expansion to be from
 
<math>n=-N</math> to <math>N</math>. This gives us
 
<center>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-N}^{N}\sum_{m=0}^{M}a_{mn}K_{n}(k_{m}r)e^{i
 
n\theta }\phi_{m}(z), \;\;r>a
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-N}^{N}\sum_{m=-2}^{M}b_{mn}I_{n}(\kappa
 
_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r<a
 
</math>
 
</center>
 
Since <math>l</math> is an integer with <math>0\leq l\leq
 
M</math> this leads to a system of <math>M+1</math> equations.
 
The number of unknowns is <math>M+3</math> and the two extra equations
 
are obtained from the boundary conditions for the free plate (6)
 
and (7). The equations to be solved for each <math>n</math> are
 
<center>
 
<math>
 
\left(  k_{0}I_{n}^{\prime}(k_{0}a)-k_{0}\frac{K_{n}^{\prime}(k_{0}
 
a)}{K_{n}(k_{0}a)}I_{n}(k_{0}a)\right)  e_{n}A_{0}\delta_{0l}
 
=\sum_{m=-2}^{M}\left(  \kappa_{m}I_{n}^{\prime}(\kappa_{m}a)-k_{l}
 
\frac{K_{n}^{\prime}(k_{l}a)}{K_{n}(k_{l}a)}I_{n}(\kappa_{m}a)\right)
 
B_{ml}b_{mn}
 
</math>
 
</center>
 
<center>
 
<math>
 
\sum_{m=-2}^{M}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
 
\left(  \kappa_{m}^{2}I_{n}(\kappa_{m}a)-\frac{1-\nu}{a}\left(  \kappa
 
_{m}I_{n}^{\prime}(\kappa_{m}a)-\frac{n^{2}}{a}I_{n}(\kappa_{m}a)\right)
 
\right) =0
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\sum_{m=-2}^{M}(\beta\kappa_{m}^{4}+1-\alpha\gamma)^{-1}b_{mn}
 
\left(  \kappa_{m}^{3}I_{n}^{\prime}(\kappa_{m}a)+n^{2}\frac{1-\nu}{a^{2}
 
}\left(  \kappa_{m}I_{n}^{\prime}(\kappa_{m}a)+\frac{1}{a}I_{n}(\kappa
 
_{m}a)\right)  \right) =0
 
</math>
 
</center>
 
It should be noted that the solutions for positive and negative
 
<math>n</math> are identical so that they do not both need to be
 
calculated. There are some minor simplifications which are a consequence of
 
this which are discussed in more detail in [[Zilman_Miloh 2000a|Zilman and Miloh 2000]].
 
 
 
=The [[Shallow Depth]] Theory of [[Zilman_Miloh_2000a|Zilman and Miloh 2000]]=
 
 
 
The shallow water theory of [[Zilman_Miloh_2000a|Zilman and Miloh 2000]] can be recovered by
 
simply setting the depth shallow enough that the shallow water theory is valid
 
and setting <math>M=0</math>. If the shallow water theory is valid then
 
the first three roots of the dispersion equation for the ice will be exactly
 
the same roots found in the shallow water theory by solving the polynomial
 
equation. The system of equations has four unknowns (three under the plate and
 
one in the open water) exactly as for the theory of [[Zilman_Miloh_2000a|Zilman and Miloh 2000]].
 
 
 
=Numerical Results=
 
 
 
[[Image:ComparisionH25.jpg|thumb|right|300px|Figure 1]]
 
 
 
We present solutions for a plate of radius <math>a=100</math>. The wavelength is
 
<math>\lambda=50</math> (recall that <math>\alpha=2\pi/\lambda\tanh\left(  2\pi
 
H/\lambda\right)</math>), <math>\beta=10^{5}</math> and
 
<math>\gamma=0</math>.
 
We compare with the method
 
presented in [[Meylan_2002a|Meylan 2002]] for an arbitrary shaped plate modified to compute
 
the solution for finite depth. The circle is represented in this scheme by
 
square panels which are arranged to, as nearly as possible, form a circular
 
shape.
 
 
 
Figure 1 shows the
 
real part (a and c) and imaginary part (b and d) of the displacement for depth
 
<math>H=25</math>. The number
 
of points in the angular expansion is <math>N=16</math>. The number of
 
roots of the dispersion equation is <math>M=8</math>. Plots (a) and
 
(b) are calculated using the circular plate method described here. Plots (c)
 
and (d) are calculated using an arbitrary shaped plate method, with the
 
panels shown being the actual panels used in the calculation. We see the
 
expected agreement between the two methods.
 
 
 
 
 
The table below shows the values of the coefficients
 
<math>b_{mn}</math> for the case for previous case (<math>\lambda=50</math>,
 
<math>a=100</math>, <math>\beta=10^5</math>, <math>\gamma=0</math>, and <math>H=25</math>). The very rapid
 
decay of the higher evanescent modes is apparent. This shows how efficient this method of
 
solution is since only a small number of modes are required.
 
 
 
<blockquote style="background: white;  padding: 0em;">
 
<table border="1">
 
<tr>
 
<td> <math>b_{mn}</math> </td><td> <math>n=0</math> </td>
 
<td> <math>n=1</math> </td><td> <math>n=2</math> </td><td> <math>n=3</math> </td>
 
</tr>
 
<tr>
 
<td><math>m=-2</math></td> <td><math>1.32 \!\times\!10^{-1}-9.71 \!\times\!10^{-1}i</math> </td>
 
<td> <math>6.85 \!\times\!10^{-1} -6.37 \!\times\!10^{-1}i</math></td>
 
<td>  <math>2.95 \!\times\!10^{-1}-1.12 \!\times\!10^{0}i</math> </td><td>  <math>6.09 \!\times\!10^{-1}
 
-4.95 \!\times\!10^{-1}i</math> </td></tr>
 
 
 
<tr><td><math>m=-1</math> </td><td>  <math>-6.38 \!\times\!10^{-5}+1.47 \!\times\!10^{-3}i</math> </td><td>
 
<math>-3.92 \!\times\!10^{-3} + 3.99 \!\times\!10^{-3}i</math></td>
 
<td> <math>1.41 \!\times\!10^{-3}+2.82 \!\times\!10^{-3}i</math> </td><td>
 
<math>-4.28 \!\times\!10^{-3} +3.89 \!\times\!10^{-3}i</math></td></tr>
 
 
 
<tr><td><math>m=0</math> </td><td>
 
<math>-3.29 \!\times\!10^{-4}+1.43 \!\times\!10^{-3}i</math> </td><td>  <math>4.26 \!\times\!10^{-3}
 
-3.62 \!\times\!10^{-3}i</math></td><td>
 
<math>-2.62 \!\times\!10^{-3}+1.76 \!\times\!10^{-3}i</math> </td><td>  <math>4.68 \!\times\!10^{-3}
 
-3.39 \!\times\!10^{-3}i</math></td></tr>
 
 
 
<tr><td><math>m=1</math> </td><td>  <math>4.31 \!\times\!10^{-7}-3.18 \!\times\!10^{-6}i</math> </td><td>
 
<math>-6.64 \!\times\!10^{-6} -7.14 \!\times\!10^{-6}i</math></td>
 
<td> <math>2.07 \!\times\!10^{-7}-7.89 \!\times\!10^{-7}i</math> </td><td>
 
<math>-6.30 \!\times\!10^{-6} -7.74 \!\times\!10^{-6}i</math></td></tr>
 
 
 
<tr><td><math>m=2</math> </td><td>
 
<math>6.79 \!\times\!10^{-13}-5.01 \!\times\!10^{-12}i</math> </td><td>
 
<math>-5.78 \!\times\!10^{-12}-6.21 \!\times\!10^{-12}i</math></td>
 
<td> <math>8.87 \!\times\!10^{-13}-3.38 \!\times\!10^{-12}i</math> </td><td>
 
<math>-5.54 \!\times\!10^{-12}-6.81 \!\times\!10^{-12}i</math></td></tr>
 
 
 
<tr><td><math>m=3</math> </td><td>  <math>1.35 \!\times\!10^{-18}-9.95 \!\times\!10^{-18}i</math> </td><td>
 
<math>-9.69 \!\times\!10^{-18}-1.04 \!\times\!10^{-17}i</math></td>
 
<td> <math>1.94 \!\times\!10^{-18}-7.39 \!\times\!10^{-18}i</math>  </td><td>
 
<math>-9.37 \!\times\!10^{-18}-1.15 \!\times\!10^{-17}i</math></td>
 
</tr>
 
</table>
 
</blockquote>
 
 
 
 
 
[[Category:Problems with Cylindrical Symmetry]]
 
 
[[Category:Linear Hydroelasticity]]
 
[[Category:Linear Hydroelasticity]]

Revision as of 21:26, 5 May 2007

Introduction

We show here a solution for a semi-infinite Floating Elastic Plate on Finite Depth. THe problem was solved by