Difference between revisions of "Eigenfunction Matching for a Submerged Finite Dock"

From WikiWaves
Jump to navigationJump to search
Line 86: Line 86:
 
</center>
 
</center>
  
The definition of all terms can be found in [[Eigenfunction Matching for Submerged Semi-Infinite Dock]]
+
The definition of all terms can be found in [[Eigenfunction Matching for Submerged Semi-Infinite Dock]],
 
+
as can the solution method.
where <math>a_{m}</math> and <math>b_{m}</math>
 
are the coefficients of the potential in the open water regions to the
 
left and right and <math>c_m</math> are the coefficients under the dock
 
covered region. We have an incident wave from the left.
 
<math>k_n^l</math> are the roots of the
 
[[Dispersion Relation for a Free Surface]]
 
<center>
 
<math>  k \tan(kl) = -\alpha\,</math>
 
</center>We denote the
 
positive imaginary solutions by <math>k_{0}^l</math> and
 
the positive real solutions by <math>k_{m}^l</math>, <math>m\geq1</math> (ordered with increasing
 
imaginary part) and
 
<math>\kappa_{m}=m\pi/(h-d)</math>. We define
 
<center>
 
<math>
 
\phi_{m}^l\left(  z\right)  = \frac{\cos k_{m}(z+l)}{\cos k_{m}l},\quad m\geq0
 
</math>
 
</center>
 
as the vertical eigenfunction of the potential in the open
 
water regions and
 
<center>
 
<math>
 
\psi_{m}\left(  z\right)  = \cos\kappa_{m}(z+h),\quad
 
m\geq 0
 
</math>
 
</center>
 
as the vertical eigenfunction of the potential in the dock
 
covered region. We define
 
<center>
 
<math>
 
\int\nolimits_{-d}^{0}\phi_{m}^d(z)\phi_{n}^d(z) d z=A_{m}\delta_{mn}
 
</math>
 
</center>
 
where
 
<center>
 
<math>
 
A_{m}=\frac{1}{2}\left(  \frac{\cos k_{m}d\sin k_{m}d+k_{m}d}{k_{m}\cos
 
^{2}k_{m}l}\right)
 
</math>
 
</center>
 
<center>
 
<math>
 
\int\nolimits_{-d}^{0}\phi_{n}^h(z)\phi_{m}^d(z) d z=B_{mn}
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\int\nolimits_{-h}^{-d}\phi_{n}^h(z)\psi_{m}(z) d z=C_{mn}
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\int\nolimits_{-h}^{-d}\psi_{m}(z)\psi_{n}(z) d z=D_{m}\delta_{mn}
 
</math>
 
</center>
 
where
 
<center>
 
<math>
 
D_{m}=\frac{1}{2}(h-d),\quad,m\neq 0 \quad \mathrm{and} \quad D_0 = (h-d)
 
</math></center>
 
 
 
==An infinite dimensional system of equations==
 
 
 
The potential and its derivative must be continuous across the
 
transition from open water to the dock region. Therefore, the
 
potentials and their derivatives at <math>x=0</math> have to be equal.
 
We obtain
 
<center>
 
<math>
 
\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
 
a_{m} \phi_{m}^h\left(  z\right)
 
=\sum_{m=0}^{\infty}b_{m}\phi_{m}^d(z),\,\,\,-d<z<0
 
</math>
 
</center>
 
<center>
 
<math>
 
\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
 
a_{m} \phi_{m}^h\left(  z\right)
 
=\sum_{m=0}^{\infty}c_{m}\psi_{m}(z),\,\,\,-h<z<-d
 
</math>
 
</center>
 
<center>
 
<math>
 
-k_0^h\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
 
k_m^h a_{m} \phi_{m}^h\left(  z\right)
 
=\sum_{m=0}^{\infty}k_m^d b_{m}\phi_{m}^d(z),\,\,\,-d<z<0
 
</math>
 
</center>
 
<center>
 
<math>
 
-k_0^h\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
 
k_m^h a_{m} \phi_{m}^h\left(  z\right)
 
=\sum_{m=0}^{\infty}\kappa_m c_{m}\psi_{m}(z),\,\,\,-h<z<-d
 
</math>
 
</center>
 
  
 
=Numerical Solution=
 
=Numerical Solution=

Revision as of 21:57, 12 July 2008

Introduction

This is the finite length version of the Eigenfunction Matching for a Submerged Semi-Infinite Dock. The full theory is not presented here, and details of the matching method can be found in Eigenfunction Matching for a Submerged Semi-Infinite Dock and Eigenfunction Matching for a Finite Dock

Governing Equations

We begin with the Frequency Domain Problem for the submerged dock in the region [math]\displaystyle{ x\gt 0 }[/math] (we assume [math]\displaystyle{ e^{i\omega t} }[/math] time dependence). The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as

[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]

[math]\displaystyle{ \phi_{z}=0, \,\, z=-h, }[/math]

[math]\displaystyle{ \partial_z\phi=\alpha\phi, \,\, z=0, }[/math]

[math]\displaystyle{ \partial_z\phi=0, \,\, z=-d,\,-L\lt x\gt L, }[/math]

We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ |x|\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave and a wave propagating away.

Solution Method

We use separation of variables in the three regions, [math]\displaystyle{ x\lt 0 }[/math] [math]\displaystyle{ -d\lt z\lt 0,\,\,x\gt 0 }[/math], and [math]\displaystyle{ -h\lt z\lt -d,\,\,x\gt 0 }[/math]. The first two regions use the free-surface eigenfunction and the third uses the dock eigenfunctions. Details can be found in Eigenfunction Matching for a Semi-Infinite Dock.

The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. The incident potential can therefore be written as

[math]\displaystyle{ \phi^{\mathrm{I}} =e^{-k_{0}(x+L)}\phi_{0}\left( z\right) }[/math]

The potential can be expanded as

[math]\displaystyle{ \phi(x,z)=e^{-k_{0}^h (x+L)}\phi_{0}^h\left( z\right) + \sum_{m=0}^{\infty}a_{m}e^{k_{m}^h x}\phi_{m}^h(z), \;\;x\lt -L }[/math]

[math]\displaystyle{ \phi(x,z)= \sum_{m=0}^{\infty}b_{m} e^{-k_{m}^d (x+L)}\phi_{m}^d(z) + \sum_{m=0}^{\infty}c{m} e^{k_{m}^d (x-L)}\phi_{m}^d(z) , \;\;-d\lt z\lt 0,\,\,-L\lt x\lt L }[/math]

and

[math]\displaystyle{ \phi(x,z)= \sum_{m=0}^{\infty}d_{m} e^{\kappa_{m} (x+L)}\psi_{m}(z) +\sum_{m=0}^{\infty}e_{m} e^{-\kappa_{m} (x-L)}\psi_{m}(z) , \;\;-h\lt z\lt -d,\,\,-L\lt x\gt L }[/math]

[math]\displaystyle{ \phi(x,z)= \sum_{m=0}^{\infty}f_{m}e^{-k_{m}^h (x-L)}\phi_{m}^h(z), \;\;x\gt L }[/math]

The definition of all terms can be found in Eigenfunction Matching for Submerged Semi-Infinite Dock, as can the solution method.

Numerical Solution

The standard method to solve these equations (from Linton and Evans 1991) is to mutiply both equations by [math]\displaystyle{ \phi_{q}^d(z) }[/math] and integrating from [math]\displaystyle{ -d }[/math] to [math]\displaystyle{ 0 }[/math] or by multiplying both equations by [math]\displaystyle{ \psi_{r}(z) }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ -d }[/math]. However, we use a different method, which is closer to the solution method for Eigenfunction Matching for a Semi-Infinite Dock which allows us to keep the computer code similar. These is no significant difference between the methods numerically and a close connection exists.

We truncate the sum to [math]\displaystyle{ N+1 }[/math] modes and introduce a new function

[math]\displaystyle{ \chi_n = \begin{cases} \psi_{n}(z),\,\,\,-h\lt z\lt -d \\ 0,\,\,\,-d\lt z\lt 0 \end{cases} }[/math]

for [math]\displaystyle{ 0 \leq n \leq M - 1 }[/math]

[math]\displaystyle{ \chi_{n+M} = \begin{cases} 0,\,\,\,-h\lt z\lt -d \\ \phi_{n}^{d}(z),\,\,\,-d\lt z\lt 0 \end{cases} }[/math]

for [math]\displaystyle{ 0 \leq n \leq N-M }[/math] and we choose the values of [math]\displaystyle{ N }[/math] so that we have the [math]\displaystyle{ N+1 }[/math] smallest values of [math]\displaystyle{ k_n }[/math] and [math]\displaystyle{ \kappa_n }[/math] (with the proviso that we have at least one from each).

We truncate the equations and write

[math]\displaystyle{ \phi_{0}^h\left( z\right) + \sum_{m=0}^{N} a_{m} \phi_{m}^h\left( z\right) =\sum_{m=0}^{N}b_{m} \chi_m, }[/math]

[math]\displaystyle{ -k_0^h\phi_{0}^h\left( z\right) + \sum_{m=0}^{\infty} k_m^h a_{m} \phi_{m}^h\left( z\right) =\sum_{m=0}^{N}k^{\prime}_m b_{m}\chi_{m} }[/math]

where [math]\displaystyle{ k^{\prime}_m }[/math] is either [math]\displaystyle{ k^{d}_q }[/math] or [math]\displaystyle{ \kappa_q }[/math] as appropriate.

We multiply each equation by [math]\displaystyle{ \phi_{q}^h(z) }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ 0 }[/math] to obtain

[math]\displaystyle{ A_{0}\delta_{0q} + a_{q}A_{q} = \sum_{m=0}^{N} b_m B^{\prime}_{mq} }[/math]

[math]\displaystyle{ -k_{0}^h A_{0}\delta_{0q} + k_{q}^h a_{q}A_{q} = \sum_{m=0}^{N} k^{\prime}_m b_m B^{\prime}_{mq} }[/math]

where [math]\displaystyle{ B^{\prime}_{mq} }[/math] is made from [math]\displaystyle{ B_{mq} }[/math] or [math]\displaystyle{ C_{mq} }[/math] as appropriate.

Solution with Waves Incident at an Angle

We can consider the problem when the waves are incident at an angle [math]\displaystyle{ \theta }[/math] but this is not presented here. For details see Eigenfunction Matching for a Semi-Infinite Dock.

Matlab Code

A program to calculate the coefficients for the submerged semi-infinite dock problems can be found here submerged_semiinfinite_dock.m

Additional code

This program requires dispersion_free_surface.m to run