Eigenfunction Matching for a Submerged Finite Dock

From WikiWaves
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.



Introduction

This is the finite length version of the Eigenfunction Matching for a Submerged Semi-Infinite Dock. The full theory is not presented here, and details of the matching method can be found in Eigenfunction Matching for a Submerged Semi-Infinite Dock and Eigenfunction Matching for a Finite Dock

Governing Equations

We begin with the Frequency Domain Problem for the submerged dock in the region [math]\displaystyle{ x\gt 0 }[/math] (we assume [math]\displaystyle{ e^{i\omega t} }[/math] time dependence). The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as

[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]

[math]\displaystyle{ \partial_{z} \phi=0, \,\, z=-h, }[/math]

[math]\displaystyle{ \partial_z\phi=\alpha\phi, \,\, z=0, }[/math]

[math]\displaystyle{ \partial_z\phi=0, \,\, z=-d,\,-L\lt x\lt L, }[/math]

We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ |x|\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave and a wave propagating away.

Solution Method

We use separation of variables in the four regions, {[math]\displaystyle{ x\lt -L \, }[/math]}, {[math]\displaystyle{ x\gt L \, }[/math]}, {[math]\displaystyle{ -d\lt z\lt 0,\,\,-L\lt x\lt L }[/math]}, and {[math]\displaystyle{ -h\lt z\lt -d,\,\,-L\lt x\lt L }[/math]}. The first three regions use the free-surface eigenfunction and the last uses dock eigenfunctions. Details can be found in Eigenfunction Matching for a Semi-Infinite Dock.

The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. The incident potential can therefore be written as

[math]\displaystyle{ \phi^{\mathrm{I}} =e^{-k_{0}^{h}(x+L)}\phi_{0}\left( z\right) }[/math]

The potential can be expanded as

[math]\displaystyle{ \phi(x,z)=e^{-k_{0}^h (x+L)}\phi_{0}^h\left( z\right) + \sum_{m=0}^{\infty}a_{m}e^{k_{m}^h (x+L)}\phi_{m}^h(z), \;\;x\lt -L }[/math]

[math]\displaystyle{ \phi(x,z)= \sum_{m=0}^{\infty}b_{m} e^{-k_{m}^d (x+L)}\phi_{m}^d(z) + \sum_{m=0}^{\infty}c_{m} e^{k_{m}^d (x-L)}\phi_{m}^d(z) , \;\;-d\lt z\lt 0,\,\,-L\lt x\lt L }[/math]

and

[math]\displaystyle{ \phi(x,z)= d_0 \frac{L-x}{2 L} + \sum_{m=1}^{\infty}d_{m} e^{-\kappa_{m} (x+L)}\psi_{m}(z) + e_0 \frac{x+L}{2 L} + \sum_{m=1}^{\infty}e_{m} e^{\kappa_{m} (x-L)}\psi_{m}(z) , \;\;-h\lt z\lt -d,\,\,-L\lt x\lt L }[/math]

[math]\displaystyle{ \phi(x,z)= \sum_{m=0}^{\infty}f_{m}e^{-k_{m}^h (x-L)}\phi_{m}^h(z), \;\;L\lt x }[/math]

The definition of all terms can be found in Eigenfunction Matching for Submerged Semi-Infinite Dock, as can the solution method and the method to extend the solution to waves incident at an angle.

Matlab Code

A program to calculate the coefficients for the submerged semi-infinite dock problems can be found here submerged_finite_dock.m

Additional code

This program requires