Difference between revisions of "Eigenfunction Matching for a Submerged Semi-Infinite Dock"

From WikiWaves
Jump to navigationJump to search
 
(30 intermediate revisions by 3 users not shown)
Line 1: Line 1:
= Introduction =
+
{{complete pages}}
 +
 
 +
== Introduction ==
  
 
The problems consists of a region to the left  
 
The problems consists of a region to the left  
Line 7: Line 9:
 
We begin with the simply problem when the waves are normally incident (so that
 
We begin with the simply problem when the waves are normally incident (so that
 
the problem is truly two-dimensional).  We then consider the case when the waves are incident
 
the problem is truly two-dimensional).  We then consider the case when the waves are incident
at an angle. For the later we refer to the solution [[Eigenfunction Matching for a Semi-Infinite Dock]]
+
at an angle. For the later we refer to the solution [[Eigenfunction Matching for a Semi-Infinite Dock]].
 +
The solution is a modified version of that given by [[Linton and Evans 1991]].
  
 
[[Image:submerged_inf_dock.jpg|thumb|right|300px|Wave scattering by a submerged semi-infinite dock]]
 
[[Image:submerged_inf_dock.jpg|thumb|right|300px|Wave scattering by a submerged semi-infinite dock]]
  
=Governing Equations=
+
== Governing Equations ==
  
 
We begin with the [[Frequency Domain Problem]] for the submerged dock in
 
We begin with the [[Frequency Domain Problem]] for the submerged dock in
Line 29: Line 32:
 
</math>
 
</math>
 
</center>
 
</center>
<center><math>
+
<center>
 +
<math>
 
\partial_z\phi=\alpha\phi, \,\, z=0,
 
\partial_z\phi=\alpha\phi, \,\, z=0,
</math></center>
+
</math>
 +
</center>
 
<center>
 
<center>
 
<math>
 
<math>
Line 43: Line 48:
 
and a wave propagating away.
 
and a wave propagating away.
  
=Solution Method=
+
== Solution Method ==
  
We use [http://en.wikipedia.org/wiki/Separation_of_Variables separation of variables] in the three regions, <math>x<0</math>
+
We use [http://en.wikipedia.org/wiki/Separation_of_Variables separation of variables] in the three regions: {<math>x<0 \,</math>},
<math>-d<z<0,\,\,x>0</math>, and <math>-h<z<-d,\,\,x>0</math>. The first two regions use the free-surface eigenfunction
+
{<math>-d<z<0,\,\,x>0</math> }, and {<math>-h<z<-d,\,\,x>0</math> }. The first two regions use the free-surface eigenfunction
and the third uses the dock eigenfunctions. Details can be found in [[Eigenfunction Matching for a Semi-Infinite Dock]].
+
and the third uses the dock eigenfunctions.  
  
The incident potential is a wave of amplitude <math>A</math>
+
{{separation of variables in two dimensions}}
in displacement travelling in the positive <math>x</math>-direction.
+
 
The incident potential can therefore be written as
+
{{separation of variables for a free surface}}
<center>
+
 
<math>
+
{{separation of variables for a dock}}
\phi^{\mathrm{I}} =e^{-k_{0}x}\phi_{0}\left(
+
We now adjust for the fact that the dock is submerged.
z\right)
+
{{separation of variables for a submerged dock}}
</math>
+
 
</center>
+
{{free surface submerged plate relations}}
 +
 
 +
=== Expansion of the potential ===
 +
 
 +
We need to apply some boundary conditions at plus and minus infinity,
 +
where are essentially that the solution cannot grow. This means that we
 +
only have the positive (or negative) roots of the dispersion equation.
 +
However, it does not help us with the purely imaginary root. Here we
 +
must use a different condition, essentially identifying one solution
 +
as the incoming wave and the other as the outgoing wave.
  
The potential can
+
Therefore the potential (without the incident wave, which will
 +
be added later) can
 
be expanded as
 
be expanded as
 
<center>
 
<center>
 
<math>
 
<math>
\phi(x,z)=e^{-k_{0}^h x}\phi_{0}^h\left(
+
\phi(x,z)=\sum_{m=0}^{\infty}a_{m}e^{k_{m}^{h}x}\phi_{m}^{h}(z), \;\;x<0
z\right) + \sum_{m=0}^{\infty}a_{m}e^{k_{m}^h x}\phi_{m}^h(z), \;\;x<0
 
</math>
 
</center>
 
<center>
 
<math>
 
\phi(x,z)= \sum_{m=0}^{\infty}b_{m}
 
e^{-k_{m}^d (x)}\phi_{m}^d(z)
 
, \;\;-d<z<0,\,\,x>0
 
 
</math>
 
</math>
 
</center>
 
</center>
Line 77: Line 84:
 
<center>
 
<center>
 
<math>
 
<math>
\phi(x,z)= \sum_{m=0}^{\infty}c_{m}
+
\phi(x,z)=\sum_{m=0}^{\infty}b_{m}
e^{\kappa_{m} x}\psi_{m}(z)
+
e^{-\mu_{m}x}\chi_{m}(z), \;\;x>0
, \;\;-h<z<-d,\,\,x>0
 
 
</math>
 
</math>
 
</center>
 
</center>
 
where <math>a_{m}</math> and <math>b_{m}</math>
 
where <math>a_{m}</math> and <math>b_{m}</math>
are the coefficients of the potential in the open water regions to the
+
are the coefficients of the potential in the open water and
left and right and <math>c_m</math> are the coefficients under the dock
+
the dock covered region respectively.
covered region. We have an incident wave from the left.  
+
 
<math>k_n^l</math> are the roots of the
+
{{incident potential for two dimensions}}
[[Dispersion Relation for a Free Surface]]
 
<center>
 
<math>  k \tan(kl) = -\alpha\,</math>
 
</center>We denote the
 
positive imaginary solutions by <math>k_{0}^l</math> and
 
the positive real solutions by <math>k_{m}^l</math>, <math>m\geq1</math> (ordered with increasing
 
imaginary part) and
 
<math>\kappa_{m}=m\pi/(h-d)</math>. We define
 
<center>
 
<math>
 
\phi_{m}^l\left(  z\right)  = \frac{\cos k_{m}(z+l)}{\cos k_{m}l},\quad m\geq0
 
</math>
 
</center>
 
as the vertical eigenfunction of the potential in the open
 
water regions and
 
<center>
 
<math>
 
\psi_{m}\left(  z\right)  = \cos\kappa_{m}(z+h),\quad
 
m\geq 0
 
</math>
 
</center>
 
as the vertical eigenfunction of the potential in the dock
 
covered region. We define
 
<center>
 
<math>
 
\int\nolimits_{-d}^{0}\phi_{m}^d(z)\phi_{n}^d(z) d z=A_{m}\delta_{mn}
 
</math>
 
</center>
 
where
 
<center>
 
<math>
 
A_{m}=\frac{1}{2}\left(  \frac{\cos k_{m}d\sin k_{m}d+k_{m}d}{k_{m}\cos
 
^{2}k_{m}l}\right)
 
</math>
 
</center>
 
<center>
 
<math>
 
\int\nolimits_{-d}^{0}\phi_{n}^h(z)\phi_{m}^d(z) d z=B_{mn}
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\int\nolimits_{-h}^{-d}\phi_{n}^h(z)\psi_{m}(z) d z=C_{mn}
 
</math>
 
</center>
 
and
 
<center>
 
<math>
 
\int\nolimits_{-h}^{-d}\psi_{m}(z)\psi_{n}(z) d z=D_{m}\delta_{mn}
 
</math>
 
</center>
 
where
 
<center>
 
<math>
 
D_{m}=\frac{1}{2}(h-d),\quad,m\neq 0 \quad \mathrm{and} \quad D_0 = (h-d)
 
</math></center>
 
  
==An infinite dimensional system of equations==
+
=== An infinite dimensional system of equations ===
  
 
The potential and its derivative must be continuous across the
 
The potential and its derivative must be continuous across the
transition from open water to the dock region. Therefore, the
+
transition from open water to the plate covered region. Therefore, the
 
potentials and their derivatives at <math>x=0</math> have to be equal.
 
potentials and their derivatives at <math>x=0</math> have to be equal.
 
We obtain
 
We obtain
 
<center>
 
<center>
 
<math>
 
<math>
\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
+
\phi_{0}\left(  z\right) + \sum_{m=0}^{\infty}
a_{m} \phi_{m}^h\left(  z\right)  
+
a_{m} \phi_{m}^{h}\left(  z\right)  
=\sum_{m=0}^{\infty}b_{m}\phi_{m}^d(z),\,\,\,-d<z<0
+
=\sum_{m=0}^{\infty}b_{m}\chi_{m}(z)
 
</math>
 
</math>
 
</center>
 
</center>
 +
and
 
<center>
 
<center>
 
<math>
 
<math>
\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
+
-k_{0}^{h}\phi_{0}\left(  z\right) +\sum
a_{m} \phi_{m}^h\left(  z\right)  
+
_{m=0}^{\infty} a_{m}k_{m}^{h}\phi_{m}^{h}\left(  z\right)  
=\sum_{m=0}^{\infty}c_{m}\psi_{m}(z),\,\,\,-h<z<-d
+
=-\sum_{m=0}^{\infty}b_{m}\mu_{m}\chi
 +
_{m}(z)
 
</math>
 
</math>
 
</center>
 
</center>
 +
for each <math>n</math>.
 +
We solve these equations by multiplying both equations by
 +
<math> \phi_{l}^{h}(z) \,</math> and integrating from <math>-h</math> to <math>0</math> to obtain:
 
<center>
 
<center>
 
<math>
 
<math>
-k_0^h\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
+
A_{0}\delta_{0l}+a_{l}A_{l}
k_m^h a_{m} \phi_{m}^h\left(  z\right)
+
=\sum_{n=0}^{\infty}b_{m}B_{ml}
=\sum_{m=0}^{\infty}k_m^d b_{m}\phi_{m}^d(z),\,\,\,-d<z<0
 
 
</math>
 
</math>
 
</center>
 
</center>
 +
and
 
<center>
 
<center>
 
<math>
 
<math>
-k_0^h\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
+
-k_{0}^{h}A_{0}\delta_{0l}+a_{l}k_{l}^{h}A_l
k_m^h a_{m} \phi_{m}^h\left( z\right)
+
  =-\sum_{m=0}^{\infty}b_{m}\mu_{m}B_{ml}
=\sum_{m=0}^{\infty}\kappa_m c_{m}\psi_{m}(z),\,\,\,-h<z<-d
 
 
</math>
 
</math>
 
</center>
 
</center>
 +
We solve these equations in the standard way by truncation.
 +
 +
== Solution with Waves Incident at an Angle ==
  
=Numerical Solution=
+
We can consider the problem when the waves are incident at an angle <math>\theta</math>.
  
The standard method to solve these equations (from [[Linton and Evans 1991]]) is to
+
{{incident angle}}
mutiply  both equations by
 
<math>\phi_{q}^d(z)</math> and integrating from <math>-d</math> to <math>0</math> or
 
by multiplying both equations by
 
<math>\psi_{r}(z)</math> and integrating from <math>-h</math> to <math>-d</math>.
 
However, we use a different method, which is closer to the solution method
 
for [[Eigenfunction Matching for a Semi-Infinite Dock]] which allows us to keep
 
the computer code similar. These is no significant difference between the methods
 
numerically and a close connection exists.
 
  
We truncate the sum to <math>N+1</math> modes and introduce a new function
+
Therefore the potential can
 +
be expanded as
 
<center>
 
<center>
 
<math>
 
<math>
\chi_n =  
+
\phi(x,z)=e^{-\hat{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{\hat{k}_{m}x}\phi_{m}(z), \;\;x<0
\begin{cases}
 
\psi_{n}(z),\,\,\,-h<z<-d \\
 
0,\,\,\,-d<z< 0
 
\end{cases}
 
 
</math>
 
</math>
 
</center>
 
</center>
for <math>0 \leq n \leq M - 1 </math>
+
and
 
<center>
 
<center>
 
<math>
 
<math>
\chi_{n+M} =
+
\phi(x,z)=\sum_{m=0}^{\infty}b_{m}
\begin{cases}
+
e^{-\hat{\mu}_{m}x}\chi_{m}(z), \;\;x>0
0,\,\,\,-h<z<-d \\
 
\phi_{n}^{d}(z),\,\,\,-d<z< 0
 
\end{cases}
 
 
</math>
 
</math>
 
</center>
 
</center>
for <math>0 \leq n \leq N-M </math>
+
where <math>\hat{k}_{m} = \sqrt{k_m^2 - k_y^2}</math> and <math>\hat{\mu}_{m} = \sqrt{\mu_m^2 - k_y^2}</math>
and we choose the values of <math>N</math> so that we have the <math>N+1</math> smallest values
+
where we always take the positive real root or the root with positive imaginary part.  
of <math>k_n</math> and <math>\kappa_n</math> (with the proviso that we have at least one from each).
 
 
 
We truncate the equations and write
 
  
 +
The equations are derived almost identically to those above and we obtain
 
<center>
 
<center>
 
<math>
 
<math>
\phi_{0}^h\left(  z\right) + \sum_{m=0}^{N}
+
A_{0}\delta_{0l}+a_{l}A_{l}
a_{m} \phi_{m}^h\left(  z\right)
+
=\sum_{n=0}^{\infty}b_{m}B_{ml}
=\sum_{m=0}^{N}b_{m} \chi_m,
 
 
</math>
 
</math>
 
</center>
 
</center>
 +
and
 
<center>
 
<center>
 
<math>
 
<math>
-k_0^h\phi_{0}^h\left(  z\right) + \sum_{m=0}^{\infty}
+
-\hat{k_{0}}A_{0}\delta_{0l}+a_{l}\hat{k}_{l}A_l
k_m^h a_{m} \phi_{m}^h\left( z\right)
+
  =-\sum_{m=0}^{\infty}b_{m}\hat{\mu}_{m}B_{ml}  
=\sum_{m=0}^{N}k^{\prime}_m b_{m}\chi_{m}
 
 
</math>
 
</math>
 
</center>
 
</center>
where <math>k^{\prime}_m</math> is either <math>k^{d}_q</math> or  <math>\kappa_q</math>
+
and these are solved exactly as before.
as appropriate.  
 
  
We multiply each equation by <math>\phi_{q}^h(z)</math> and integrating
+
== Energy Balance ==
from <math>-h</math> to <math>0</math> to obtain
+
 
<center>
+
{{energy contour and preliminaries}}
<math>
 
A_{0}\delta_{0q} + a_{q}A_{q}
 
= \sum_{m=0}^{N} b_m B^{\prime}_{mq}
 
</math>
 
</center>
 
<center>
 
<math>
 
-k_{0}^h A_{0}\delta_{0q} + k_{q}^h a_{q}A_{q}
 
= \sum_{m=0}^{N} k^{\prime}_m b_m B^{\prime}_{mq}
 
</math>
 
</center>
 
where <math>B^{\prime}_{mq}</math> is made from <math>B_{mq}</math> or <math>C_mq</math> as appropriate.
 
  
= Solution with Waves Incident at an Angle =
+
We only get contributions from the vertical ends and we obtain
  
We can consider the problem when the waves are incident at an angle <math>\theta</math> but this
+
<center><math>
is not presented here. For details see [[Eigenfunction Matching for a Semi-Infinite Dock]].
+
\lim_{x\to-\infty} \Im\int_{-h}^{0}\phi^*\frac{\partial\phi}{\partial n} \mathrm{d}z 
 +
=  \lim_{x\to-\infty} \Im\int_{-h}^{0} \hat{k}_0 \left(e^{\hat{k}_0 x} + a_0^{*} e^{-\hat{k}_0 x} \right)
 +
\left(e^{-\hat{k}_0 x} - a_0 e^{\hat{k}_0 x} \right)\phi_0(z)^2 \mathrm{d}z 
 +
</math></center>
 +
<center><math>
 +
= \frac{\hat{k}_0}{i} A_0 \left(1 - |a_0^2| \right)
 +
</math></center>
 +
and
 +
<center><math>
 +
\lim_{x\to\infty} \Im\int_{-h}^{0}\phi^*\frac{\partial\phi}{\partial n} \mathrm{d}z 
 +
=  \lim_{x\to\infty} \Im\int_{-h}^{0} -\hat{\mu}_0 \left(b_0^{*} e^{\hat{\mu}_0 x} \right)
 +
\left(b_0 e^{-\hat{\mu}_0 x}\right)\chi_0(z)^2 \mathrm{d}z 
 +
</math></center>
 +
<center><math>
 +
= - \frac{\hat{\mu}_0}{i} |b_0^2| \int_{-h}^{0} \chi_0(z)^2 \mathrm{d}z 
 +
</math></center>
 +
Therefore the energy balance can be written as
 +
<center><math>
 +
\hat{k}_0 A_0 |a_0^2| + \hat{\mu}_0 |b_0^2| \int_{-h}^{0} \chi_0(z)^2 \mathrm{d}z  = \hat{k}_0 A_0
 +
</math></center>
 +
Note that the second integral above is actually only from <math>-d</math> to 0.
  
= Matlab Code =
+
== Matlab Code ==
  
 
A program to calculate the coefficients for the submerged semi-infinite dock problems can be found here
 
A program to calculate the coefficients for the submerged semi-infinite dock problems can be found here
 
[http://www.math.auckland.ac.nz/~meylan/code/eigenfunction_matching/submerged_semiinfinite_dock.m submerged_semiinfinite_dock.m]
 
[http://www.math.auckland.ac.nz/~meylan/code/eigenfunction_matching/submerged_semiinfinite_dock.m submerged_semiinfinite_dock.m]
  
== Additional code ==
+
=== Additional code ===
  
 
This program requires
 
This program requires
[http://www.math.auckland.ac.nz/~meylan/code/dispersion/dispersion_free_surface.m dispersion_free_surface.m]
+
* {{free surface dispersion equation code}}
to run
+
 
  
 
[[Category:Eigenfunction Matching Method]]
 
[[Category:Eigenfunction Matching Method]]
 
[[Category:Pages with Matlab Code]]
 
[[Category:Pages with Matlab Code]]
 +
[[Category:Complete Pages]]

Latest revision as of 23:59, 16 October 2009


Introduction

The problems consists of a region to the left with a free surface and a region to the right with a free surface and a submerged dock/plate through which not flow is possible. We begin with the simply problem when the waves are normally incident (so that the problem is truly two-dimensional). We then consider the case when the waves are incident at an angle. For the later we refer to the solution Eigenfunction Matching for a Semi-Infinite Dock. The solution is a modified version of that given by Linton and Evans 1991.

Wave scattering by a submerged semi-infinite dock

Governing Equations

We begin with the Frequency Domain Problem for the submerged dock in the region [math]\displaystyle{ x\gt 0 }[/math] (we assume [math]\displaystyle{ e^{i\omega t} }[/math] time dependence). The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as

[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]

[math]\displaystyle{ \phi_{z}=0, \,\, z=-h, }[/math]

[math]\displaystyle{ \partial_z\phi=\alpha\phi, \,\, z=0, }[/math]

[math]\displaystyle{ \partial_z\phi=0, \,\, z=-d,\,x\gt 0, }[/math]

We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ |x|\rightarrow\infty }[/math]. This essentially implies that the only wave at infinity is propagating away and at negative infinity there is a unit incident wave and a wave propagating away.

Solution Method

We use separation of variables in the three regions: {[math]\displaystyle{ x\lt 0 \, }[/math]}, {[math]\displaystyle{ -d\lt z\lt 0,\,\,x\gt 0 }[/math] }, and {[math]\displaystyle{ -h\lt z\lt -d,\,\,x\gt 0 }[/math] }. The first two regions use the free-surface eigenfunction and the third uses the dock eigenfunctions.

We express the potential as

[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]

and then Laplace's equation becomes

[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]

Separation of variables for a free surface

We use separation of variables

We express the potential as

[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]

and then Laplace's equation becomes

[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]

The separation of variables equation for deriving free surface eigenfunctions is as follows:

[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]

subject to the boundary conditions

[math]\displaystyle{ Z^{\prime}(-h) = 0 }[/math]

and

[math]\displaystyle{ Z^{\prime}(0) = \alpha Z(0) }[/math]

We can then use the boundary condition at [math]\displaystyle{ z=-h \, }[/math] to write

[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]

where we have chosen the value of the coefficent so we have unit value at [math]\displaystyle{ z=0 }[/math]. The boundary condition at the free surface ([math]\displaystyle{ z=0 \, }[/math]) gives rise to:

[math]\displaystyle{ k\tan\left( kh\right) =-\alpha \, }[/math]

which is the Dispersion Relation for a Free Surface

The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by [math]\displaystyle{ k_{0}=\pm ik \, }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} \, }[/math], [math]\displaystyle{ m\geq1 }[/math]. The [math]\displaystyle{ k \, }[/math] of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations

[math]\displaystyle{ \cos ix = \cosh x, \quad \sin ix = i\sinh x, }[/math]

to arrive at the dispersion relation

[math]\displaystyle{ \alpha = k\tanh kh. }[/math]

We note that for a specified frequency [math]\displaystyle{ \omega \, }[/math] the equation determines the wavenumber [math]\displaystyle{ k \, }[/math].

Finally we define the function [math]\displaystyle{ Z(z) \, }[/math] as

[math]\displaystyle{ \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]

as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that

[math]\displaystyle{ \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} }[/math]

where

[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right). }[/math]


Separation of Variables for a Dock

The separation of variables equation for a floating dock

[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0, }[/math]

subject to the boundary conditions

[math]\displaystyle{ Z^{\prime} (-h) = 0, }[/math]

and

[math]\displaystyle{ Z^{\prime} (0) = 0. }[/math]

The solution is [math]\displaystyle{ k=\kappa_{m}= \frac{m\pi}{h} \, }[/math], [math]\displaystyle{ m\geq 0 }[/math] and

[math]\displaystyle{ Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0. }[/math]

We note that

[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) \mathrm{d} z=C_{m}\delta_{mn}, }[/math]

where

[math]\displaystyle{ C_{m} = \begin{cases} h,\quad m=0 \\ \frac{1}{2}h,\,\,\,m\neq 0 \end{cases} }[/math]

We now adjust for the fact that the dock is submerged. The depth above the plate is [math]\displaystyle{ d }[/math] and below the plate is [math]\displaystyle{ h-d }[/math]. We introduce a new dispersion value [math]\displaystyle{ \mu_n }[/math]:

[math]\displaystyle{ \mu_n = \begin{cases} k_n^{d},\qquad \qquad\mbox{for}\,\, 0 \leq n \leq N-M\\ n\pi/(h-d),\,\,\mbox{otherwise} \end{cases} }[/math]

where [math]\displaystyle{ k_n^{d} }[/math] are the roots of the Dispersion Relation for a Free Surface with depth [math]\displaystyle{ d }[/math]. We also order the roots with the first being the positive imaginary solution [math]\displaystyle{ k_0^{d} }[/math], the second being zero, then ordering by increasing size. We then define a new function

[math]\displaystyle{ \chi_n = \begin{cases} 0,\,\,\, \qquad-d\lt z\lt 0 \\ \psi_{n}(z),\,\,\,-h\lt z\lt -d \end{cases} }[/math]

or

[math]\displaystyle{ \chi_{n} = \begin{cases} \phi_{n}^{d}(z),\,\,\,-d\lt z\lt 0 \\ 0,\,\,\qquad-h\lt z\lt -d \end{cases} }[/math]

where

[math]\displaystyle{ \phi_{m}^{d}\left( z\right) =\frac{\cos k_{m}^{d}(z+d)}{\cos k_{m}^{d}d},\quad m\geq0 }[/math]

depending on whether the root [math]\displaystyle{ \mu_n }[/math] is above or below.

Inner product between free surface and submerged plate modes

We define

[math]\displaystyle{ \int\nolimits_{-d}^{0}\phi_{n}^h(z)\chi_{m}^d(z) \mathrm{d} z=B_{mn} }[/math]

where [math]\displaystyle{ B_{mn} }[/math] is either

[math]\displaystyle{ \int\nolimits_{-d}^{0}\phi_{n}^h(z)\phi_{m}^d(z) \mathrm{d} z }[/math]

or

[math]\displaystyle{ \int\nolimits_{-h}^{-d}\phi_{n}^h(z)\psi_{m}(z) \mathrm{d} z }[/math]

depending on whether the root [math]\displaystyle{ \mu_n }[/math] is above or below.

Expansion of the potential

We need to apply some boundary conditions at plus and minus infinity, where are essentially that the solution cannot grow. This means that we only have the positive (or negative) roots of the dispersion equation. However, it does not help us with the purely imaginary root. Here we must use a different condition, essentially identifying one solution as the incoming wave and the other as the outgoing wave.

Therefore the potential (without the incident wave, which will be added later) can be expanded as

[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}a_{m}e^{k_{m}^{h}x}\phi_{m}^{h}(z), \;\;x\lt 0 }[/math]

and

[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m} e^{-\mu_{m}x}\chi_{m}(z), \;\;x\gt 0 }[/math]

where [math]\displaystyle{ a_{m} }[/math] and [math]\displaystyle{ b_{m} }[/math] are the coefficients of the potential in the open water and the dock covered region respectively.

Incident potential

To create meaningful solutions of the velocity potential [math]\displaystyle{ \phi }[/math] in the specified domains we add an incident wave term to the expansion for the domain of [math]\displaystyle{ x \lt 0 }[/math] above. The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. We would only see this in the time domain [math]\displaystyle{ \Phi(x,z,t) }[/math] however, in the frequency domain the incident potential can be written as

[math]\displaystyle{ \phi_{\mathrm{I}}(x,z) =e^{-k_{0}x}\chi_{0}\left( z\right). }[/math]

The total velocity (scattered) potential now becomes [math]\displaystyle{ \phi = \phi_{\mathrm{I}} + \phi_{\mathrm{D}} }[/math] for the domain of [math]\displaystyle{ x \lt 0 }[/math].

The first term in the expansion of the diffracted potential for the domain [math]\displaystyle{ x \lt 0 }[/math] is given by

[math]\displaystyle{ a_{0}e^{k_{0}x}\chi_{0}\left( z\right) }[/math]

which represents the reflected wave.

In any scattering problem [math]\displaystyle{ |R|^2 + |T|^2 = 1 }[/math] where [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] are the reflection and transmission coefficients respectively. In our case of the semi-infinite dock [math]\displaystyle{ |a_{0}| = |R| = 1 }[/math] and [math]\displaystyle{ |T| = 0 }[/math] as there are no transmitted waves in the region under the dock.

An infinite dimensional system of equations

The potential and its derivative must be continuous across the transition from open water to the plate covered region. Therefore, the potentials and their derivatives at [math]\displaystyle{ x=0 }[/math] have to be equal. We obtain

[math]\displaystyle{ \phi_{0}\left( z\right) + \sum_{m=0}^{\infty} a_{m} \phi_{m}^{h}\left( z\right) =\sum_{m=0}^{\infty}b_{m}\chi_{m}(z) }[/math]

and

[math]\displaystyle{ -k_{0}^{h}\phi_{0}\left( z\right) +\sum _{m=0}^{\infty} a_{m}k_{m}^{h}\phi_{m}^{h}\left( z\right) =-\sum_{m=0}^{\infty}b_{m}\mu_{m}\chi _{m}(z) }[/math]

for each [math]\displaystyle{ n }[/math]. We solve these equations by multiplying both equations by [math]\displaystyle{ \phi_{l}^{h}(z) \, }[/math] and integrating from [math]\displaystyle{ -h }[/math] to [math]\displaystyle{ 0 }[/math] to obtain:

[math]\displaystyle{ A_{0}\delta_{0l}+a_{l}A_{l} =\sum_{n=0}^{\infty}b_{m}B_{ml} }[/math]

and

[math]\displaystyle{ -k_{0}^{h}A_{0}\delta_{0l}+a_{l}k_{l}^{h}A_l =-\sum_{m=0}^{\infty}b_{m}\mu_{m}B_{ml} }[/math]

We solve these equations in the standard way by truncation.

Solution with Waves Incident at an Angle

We can consider the problem when the waves are incident at an angle [math]\displaystyle{ \theta }[/math].

When a wave in incident at an angle [math]\displaystyle{ \theta }[/math] we have the wavenumber in the [math]\displaystyle{ y }[/math] direction is [math]\displaystyle{ k_y = \sin\theta k_0 }[/math] where [math]\displaystyle{ k_0 }[/math] is as defined previously (note that [math]\displaystyle{ k_y }[/math] is imaginary).

This means that the potential is now of the form [math]\displaystyle{ \phi(x,y,z)=e^{k_y y}\phi(x,z) }[/math] so that when we separate variables we obtain

[math]\displaystyle{ k^2 = k_x^2 + k_y^2 }[/math]

where [math]\displaystyle{ k }[/math] is the separation constant calculated without an incident angle.

Therefore the potential can be expanded as

[math]\displaystyle{ \phi(x,z)=e^{-\hat{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{\hat{k}_{m}x}\phi_{m}(z), \;\;x\lt 0 }[/math]

and

[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m} e^{-\hat{\mu}_{m}x}\chi_{m}(z), \;\;x\gt 0 }[/math]

where [math]\displaystyle{ \hat{k}_{m} = \sqrt{k_m^2 - k_y^2} }[/math] and [math]\displaystyle{ \hat{\mu}_{m} = \sqrt{\mu_m^2 - k_y^2} }[/math] where we always take the positive real root or the root with positive imaginary part.

The equations are derived almost identically to those above and we obtain

[math]\displaystyle{ A_{0}\delta_{0l}+a_{l}A_{l} =\sum_{n=0}^{\infty}b_{m}B_{ml} }[/math]

and

[math]\displaystyle{ -\hat{k_{0}}A_{0}\delta_{0l}+a_{l}\hat{k}_{l}A_l =-\sum_{m=0}^{\infty}b_{m}\hat{\mu}_{m}B_{ml} }[/math]

and these are solved exactly as before.

Energy Balance

Based on the method used in Evans and Davies 1968, a check can be made to ensure the solutions energy balance. The energy balance equation is derived by applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate. The domain of integration is shown in the figure on the right. We assume that the angle is sufficiently small that we do not get total reflection.

A diagram depicting the area [math]\displaystyle{ \Omega }[/math] which is bounded by the rectangle [math]\displaystyle{ \partial\Omega }[/math]. The rectangle [math]\displaystyle{ \partial\Omega }[/math] is bounded by [math]\displaystyle{ -h\leq z \leq0 }[/math] and [math]\displaystyle{ -\infty\leq x \leq \infty }[/math]

Applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate [math]\displaystyle{ \phi^* }[/math] gives

[math]\displaystyle{ { \iint_\Omega\left(\phi^*\nabla^2\phi - \phi\nabla^2\phi^* \right)\mathrm{d}x\mathrm{d}z = \int_{\partial\Omega}\left(\phi^*\frac{\partial\phi}{\partial n} - \phi\frac{\partial\phi^*}{\partial n} \right)\mathrm{d}l }, }[/math]

where [math]\displaystyle{ n }[/math] denotes the outward plane normal to the boundary and [math]\displaystyle{ l }[/math] denotes the plane parallel to the boundary. As [math]\displaystyle{ \phi }[/math] and [math]\displaystyle{ \phi^* }[/math] satisfy the Laplace's equation, the left hand side of the Green theorem equation vanishes so that it reduces to

[math]\displaystyle{ \Im\int_\mathcal{S}\phi^*\frac{\partial\phi}{\partial n} \mathrm{d}l = 0, }[/math]

We only get contributions from the vertical ends and we obtain

[math]\displaystyle{ \lim_{x\to-\infty} \Im\int_{-h}^{0}\phi^*\frac{\partial\phi}{\partial n} \mathrm{d}z = \lim_{x\to-\infty} \Im\int_{-h}^{0} \hat{k}_0 \left(e^{\hat{k}_0 x} + a_0^{*} e^{-\hat{k}_0 x} \right) \left(e^{-\hat{k}_0 x} - a_0 e^{\hat{k}_0 x} \right)\phi_0(z)^2 \mathrm{d}z }[/math]
[math]\displaystyle{ = \frac{\hat{k}_0}{i} A_0 \left(1 - |a_0^2| \right) }[/math]

and

[math]\displaystyle{ \lim_{x\to\infty} \Im\int_{-h}^{0}\phi^*\frac{\partial\phi}{\partial n} \mathrm{d}z = \lim_{x\to\infty} \Im\int_{-h}^{0} -\hat{\mu}_0 \left(b_0^{*} e^{\hat{\mu}_0 x} \right) \left(b_0 e^{-\hat{\mu}_0 x}\right)\chi_0(z)^2 \mathrm{d}z }[/math]
[math]\displaystyle{ = - \frac{\hat{\mu}_0}{i} |b_0^2| \int_{-h}^{0} \chi_0(z)^2 \mathrm{d}z }[/math]

Therefore the energy balance can be written as

[math]\displaystyle{ \hat{k}_0 A_0 |a_0^2| + \hat{\mu}_0 |b_0^2| \int_{-h}^{0} \chi_0(z)^2 \mathrm{d}z = \hat{k}_0 A_0 }[/math]

Note that the second integral above is actually only from [math]\displaystyle{ -d }[/math] to 0.

Matlab Code

A program to calculate the coefficients for the submerged semi-infinite dock problems can be found here submerged_semiinfinite_dock.m

Additional code

This program requires