Difference between revisions of "Eigenfunctions for a Uniform Free Beam"

From WikiWaves
Jump to navigationJump to search
Line 28: Line 28:
 
By imposing boundary conditions at <math>x = L</math> :
 
By imposing boundary conditions at <math>x = L</math> :
  
 +
<math>
 
\begin{bmatrix}
 
\begin{bmatrix}
 
   0      & \cdots & 0      \\
 
   0      & \cdots & 0      \\
Line 33: Line 34:
 
   0      & \cdots & 0
 
   0      & \cdots & 0
 
\end{bmatrix}
 
\end{bmatrix}
 +
</math>
  
 
<center><math>
 
<center><math>

Revision as of 22:10, 6 November 2008

We can find a the eigenfunction which satisfy

[math]\displaystyle{ \partial_x^4 w_n = \lambda_n^4 w_n }[/math]

plus the edge conditions.

[math]\displaystyle{ \begin{matrix} \frac{\partial^3}{\partial x^3} \frac{\partial\phi}{\partial z}= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix} \frac{\partial^2}{\partial x^2} \frac{\partial\phi}{\partial z} = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L. \end{matrix} }[/math]

This solution is discussed further in Eigenfunctions for a Free Beam.

Due to symmetry of the problem, dry natural vibrations of a free beam can be split into two different sets of modes, symmetric (even) modes and skew-symmetric (odd) modes.

General solution of the above stated equation is:

[math]\displaystyle{ w_n(x) = C_1 sin(\lambda_n x) + C_2 cos(\lambda_n x) + C_3 sinh(\lambda_n x) + C_4 cosh(\lambda_n x) }[/math]

Symmetric modes

[math]\displaystyle{ C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 cos(\lambda_n x) + C_4 cosh(\lambda_n x) }[/math]

By imposing boundary conditions at [math]\displaystyle{ x = L }[/math] :

[math]\displaystyle{ \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} }[/math]

[math]\displaystyle{ \frac{1}{2} xx }[/math]