Energy Balance for Two Elastic Plates

From WikiWaves
Revision as of 04:18, 8 July 2008 by Meylan (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Solving the Energy Balance Equation

Pulling it all together, \eqref{Eqn:EnergyPhi} becomes

[math]\displaystyle{ \frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda}(k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 +k_y^2)\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]\\ -\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 +k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right]\\ + \frac{\kappa^I_{\Lambda}|T_\Lambda(0)|^2}{2k^I_\Lambda}\left(\tanh{(k^I_\Lambda h)}+\frac{k^I_\Lambda h}{\cosh^2{(k^I_\Lambda h)}}\right)\\ - \frac{\kappa^I_{1}\left(1 - |R_1(0)|^2\right)}{2k^I_1}\left(\tanh{(k^I_1h)}+\frac{hk^I_1}{\cosh^2{(k^I_1h)}}\right)=0. \end{multline*} Re-arranging gives \begin{multline*} \kappa^I_{\Lambda}\tanh{(k^I_\Lambda h)} \left(\frac{\beta_\Lambda}{\alpha}2(k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 +k_y^2)\tanh{(k^I_\Lambda h)}\right. \\ \left.+ \frac{1}{2k^I_\Lambda}+\frac{h}{2\sinh{(k^I_\Lambda h)}\cosh{(k^I_\Lambda h)}}\right)|T_\Lambda(0)|^2 \end{multline*} \begin{multline*} \quad - \kappa^I_{1}\tanh{(k^I_1 h)} \left(\frac{\beta_1}{\alpha}2(k^I_1)^2((\kappa^I_{1})^2 +k_y^2)\tanh{(k^I_1 h)}\right. \\ \left.+ \frac{1}{2it}+\frac{h}{2\sinh{(k^I_1 h)}\cosh{(k^I_1 h)}}\right)(1-|R_1(0)|^2)=0 }[/math]

which can be expressed as

[math]\displaystyle{ D |T_{\Lambda}(0)|^2 + |R_{1}(0)|^2 = 1, }[/math]

where [math]\displaystyle{ D }[/math] is given by

[math]\displaystyle{ D = \left(\frac{\kappa^I_{\Lambda} k^I_1\cosh^2{(k^I_1h)}}{\kappa^I_{1}k^I_\Lambda\cosh^2{(k^I_\Lambda h)}}\right) \left(\frac{\frac{\beta_\Lambda}{\alpha}4(k^I_\Lambda)^3((\kappa^I_{\Lambda})^2 +k_y^2)\sinh^2{(k^I_\Lambda h)} + \frac{1}{2}{\sinh{(2k^I_\Lambda h)}}+k^I_\Lambda h} {\frac{\beta_1}{\alpha}4(k^I_1)^3((\kappa^I_{1})^2 +k_y^2)\sinh^2{(k^I_1h)} + \frac{1}{2}{\sinh{(2k^I_1h)}}+k^I_1h}\right) }[/math]