Example Calculations for the KdV and IST

From WikiWaves
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Nonlinear PDE's Course
Current Topic Example Calculations for the KdV and IST
Next Topic Reaction-Diffusion Systems
Previous Topic Connection betwen KdV and the Schrodinger Equation


We consider here the two examples we treated in Properties of the Linear Schrodinger Equation.

Example1: [math]\displaystyle{ \delta }[/math] function potential

We have already calculated the scattering data for the delta function potential in Properties of the Linear Schrodinger Equation. The scattering data is

[math]\displaystyle{ S\left( \lambda,0\right) =\left( k_{1},\sqrt{k_{1}},\frac{u_{0}}{2ik-u_{0} },\frac{2ik}{2ik-u_{0}}\right) }[/math]

The spectral data evolves as

[math]\displaystyle{ k_{1}=k_{1} }[/math]
[math]\displaystyle{ c_{1}\left( t\right) =c_{1}\left( 0\right) e^{4k_{1}^{3}t}=\sqrt{k_{1} }e^{4k_{1}^{3}t} }[/math]
[math]\displaystyle{ r\left( k,t\right) =r\left( k,0\right) e^{8ik^{3}t} }[/math]
[math]\displaystyle{ a\left( k,t\right) =a\left( k,0\right) }[/math]

so that

[math]\displaystyle{ S\left( \lambda,t\right) =\left( k_{1},\sqrt{k_{1}}e^{4k_{1}^{3}t} ,\frac{u_{0}}{2ik-u_{0}}e^{8ik^{3}t},\frac{2ik}{2ik-u_{0}}\right) }[/math]

Example 2: Hat Function Potential

We solve for the case when

[math]\displaystyle{ u\left( x\right) =\left\{ \begin{matrix} 0, & x\notin\left[ -1,1\right] \\ 20, & x\in\left[ -1,1\right] \end{matrix} \right. }[/math]

We have already solved this case in Properties of the Linear Schrodinger Equation. For the even solutions we need to solve

[math]\displaystyle{ \tan\kappa=\frac{k}{\kappa} }[/math]

where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math].

For the odd solutions we need to solve and

[math]\displaystyle{ \tan\kappa=-\frac{\kappa}{k} }[/math]

Recall that the solitons have amplitude [math]\displaystyle{ 2k_{n}^{2} }[/math] or [math]\displaystyle{ -2\lambda_{n} }[/math]. This can be seen in the height of the solitary waves.

We cannot work with a hat function numerically, because the jump in [math]\displaystyle{ u }[/math] leads to high frequencies which dominate the response.. We can smooth our function by a number of methods. We use here the function [math]\displaystyle{ \tanh\left( x\right) }[/math] so we write

[math]\displaystyle{ u\left( x\right) =\frac{20}{2}\left( \tanh\left( \nu\left( x+1\right) \right) -\tanh\left( \nu\left( x-1\right) \right) \right) }[/math]

where [math]\displaystyle{ \nu }[/math] is an appropriate constant to make the function increase in value sufficiently rapidly but not too rapidly.


Animation Three-dimensional plot.
Evolution of [math]\displaystyle{ u(x,t) }[/math].
Evolution of [math]\displaystyle{ u(x,t) }[/math]

Lecture Videos

Part 1