Difference between revisions of "Free-Surface Green Function"

From WikiWaves
Jump to navigationJump to search
m
Line 45: Line 45:
 
where
 
where
 
<center>
 
<center>
<math>f_n(z)=\frac{\cos(k_n(z+h))}{N_n}</math>
+
<math>f_n(z)=\frac{\cos(k_n(z h))}{N_n}</math>
 
</center>
 
</center>
 
<math>k_n</math> are the roots of the
 
<math>k_n</math> are the roots of the
 
[[Dispersion Relation for a Free Surface]]
 
[[Dispersion Relation for a Free Surface]]
 
<center><math>
 
<center><math>
k_\infty+k_n\tan{(k_n h)}=  0\,
+
k_\infty k_n\tan{(k_n h)}=  0\,
 
</math></center>
 
</math></center>
 
with <math>k_0</math> being purely imaginary with negative imaginary part and
 
with <math>k_0</math> being purely imaginary with negative imaginary part and
Line 61: Line 61:
 
and are given by
 
and are given by
 
<center><math>
 
<center><math>
N_n = \sqrt{\frac{\cos(k_nh)\sin(k_nh)+k_nh}{2k_n}}
+
N_n = \sqrt{\frac{\cos(k_nh)\sin(k_nh) k_nh}{2k_n}}
 
</math></center>
 
</math></center>
 
The Green function as written needs to only satisfy the condition
 
The Green function as written needs to only satisfy the condition
 
<center><math>
 
<center><math>
(\partial_x^2 + \partial_z^2 )G = \delta(x-a)\delta(z-c).
+
(\partial_x^2   \partial_z^2 )G = \delta(x-a)\delta(z-c).
 
</math></center>
 
</math></center>
 
We can expand the delta function as  
 
We can expand the delta function as  
Line 91: Line 91:
 
<math>
 
<math>
 
G(\mathbf{x},\mathbf{\zeta})
 
G(\mathbf{x},\mathbf{\zeta})
= \sum_{n=0}^\infty -\frac{e^{-|x-a|k_n}}{\cos(k_nh)\sin(k_nh)+k_nh}
+
= \sum_{n=0}^\infty -\frac{e^{-|x-a|k_n}}{\cos(k_nh)\sin(k_nh) k_nh}
\cos(k_n(z+h))\cos(k_n(c+h))
+
\cos(k_n(z h))\cos(k_n(c h))
 
</math>
 
</math>
 
</center>
 
</center>
 
We can use the [[Dispersion Relation for a Free Surface]] which the roots
 
We can use the [[Dispersion Relation for a Free Surface]] which the roots
<math>k_n</math> satisfy to show that <math>k_\infty^2+k_n^2 = \sec^2k_n h</math>
+
<math>k_n</math> satisfy to show that <math>k_\infty^2 k_n^2 = \sec^2k_n h</math>
 
so that we can write the Green function as  
 
so that we can write the Green function as  
 
<center>
 
<center>
 
<math>
 
<math>
 
G(\mathbf{x},\mathbf{\zeta})
 
G(\mathbf{x},\mathbf{\zeta})
= \sum_{n=0}^\infty \frac{(k_\infty^2+k_n^2)e^{-|x-a|k_n}}{k_\infty - (k_\infty^2+k_n^2)k_nh }
+
= \sum_{n=0}^\infty \frac{(k_\infty^2 k_n^2)e^{-|x-a|k_n}}{k_\infty - (k_\infty^2 k_n^2)k_nh }
\cos(k_n(z+h))\cos(k_n(c+h))
+
\cos(k_n(z h))\cos(k_n(c h))
 
</math>
 
</math>
 
</center>
 
</center>
Line 115: Line 115:
 
<center>
 
<center>
 
<math>
 
<math>
\left(\partial_x^2 + \partial_z^2 - k_y^2\right)
+
\left(\partial_x^2   \partial_z^2 - k_y^2\right)
 
G(\mathbf{x},\mathbf{\xi})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty<z<0
 
G(\mathbf{x},\mathbf{\xi})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty<z<0
 
</math>
 
</math>
Line 135: Line 135:
 
<math>
 
<math>
 
G(\mathbf{x},\mathbf{\zeta})
 
G(\mathbf{x},\mathbf{\zeta})
= \sum_{n=0}^\infty -\frac{k_n}{\sqrt{k_n^2+k_y^2}}
+
= \sum_{n=0}^\infty -\frac{k_n}{\sqrt{k_n^2 k_y^2}}
\frac{e^{-|x-a|\sqrt{k_n^2+k_y^2}}}{\cos(k_nh)\sin(k_nh)+k_nh}
+
\frac{e^{-|x-a|\sqrt{k_n^2 k_y^2}}}{\cos(k_nh)\sin(k_nh) k_nh}
\cos(k_n(z+h))\cos(k_n(c+h))
+
\cos(k_n(z h))\cos(k_n(c h))
 
</math>
 
</math>
 
</center>
 
</center>
Line 162: Line 162:
 
and the distance from the ''mirror'' source point
 
and the distance from the ''mirror'' source point
 
<math>\bar{\mathbf{\xi}} = (a,b,-c)</math> respectively,
 
<math>\bar{\mathbf{\xi}} = (a,b,-c)</math> respectively,
<math>R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2</math> and <math>R_1^2 = (x-a)^2 + (y-b)^2 +
+
<math>R_0^2 = (x-a)^2   (y-b)^2   (z-c)^2</math> and <math>R_1^2 = (x-a)^2   (y-b)^2
(z+c)^2</math>.
+
(z c)^2</math>.
  
 
==[[Finite Depth]]==
 
==[[Finite Depth]]==
Line 175: Line 175:
 
<math>
 
<math>
 
\begin{matrix}
 
\begin{matrix}
G(\mathbf{x};\mathbf{\xi}) & = & \frac{i}{2} \,
+
G(\mathbf{x};\mathbf{\xi})
\frac{k_\infty^2-k^2}{(k_\infty^2-k^2)h-k_\infty}\, \cosh k(z+h)\, \cosh
 
k(c+h) \, H_0^{(1)}(k r) \\
 
& + & \frac{1}{\pi} \sum_{m=1}^{\infty}
 
\frac{k_m^2+k_\infty^2}{(k_m^2+k_\infty^2)h-k_\infty}\, \cos k_m(z+h)\, \cos
 
k_m(c+h) \, K_0(k_m r),
 
\end{matrix}
 
</math>
 
</center>
 
where <math>H^{(1)}_0</math> and <math>K_0</math> denote the Hankel function of the first
 
kind and the modified Bessel function of the second kind, both of
 
order zero as defined in [[Abramowitz_Stegun_1964a|Abramowitz and Stegun 1964]], <math>k</math> is the positive real solution to the [[Dispersion Relation for a Free Surface]]
 
and <math>k_m</math> are the imaginary parts of the solutions with positive imaginary part.
 
This way of writing the equation was primarily to avoid complex values for the Bessel functions,
 
however most computer packages will calculate Bessel functions for complex argument so
 
it makes more sense to write the Green function in the following form
 
<center>
 
<math>
 
G(\mathbf{x};\mathbf{\xi}) = \frac{1}{\pi} \sum_{m=0}^{\infty}
 
\frac{k_m^2+k_\infty^2}{(k_m^2+k_\infty^2)h-k_\infty}\, \cos k_m(z+h)\, \cos
 
k_m(c+h) \, K_0(k_m r),
 
</math>
 
</center>
 
where <math>k_m</math> are as before except <math>k_0=ik</math>.
 
 
 
An expression where both variables are given in cylindrical polar coordinates
 
is the following
 
<center><math>
 
G(r,\theta,z;s,\varphi,c)=  \frac{1}{\pi} \sum_{m=0}^{\infty}
 
\frac{k_m^2+k_\infty^2}{h(k_m^2+k_\infty^2)-k_\infty}\, \cos k_m(z+h) \cos
 
k_m(c+h) \sum_{\nu=-\infty}^{\infty} K_\nu(k_m r_+) I_\nu(k_m r_-) \mathrm{e}^{\mathrm{i}\nu
 
(\theta - \varphi)},
 
</math></center>
 
where <math>r_+=\mathrm{max}\{r,s\}</math>, and <math>r_-=\mathrm{min}\{r,s\} </math>; this was
 
given by [[Black 1975]] and [[Fenton 1978]] and can be derived by applying [[Graf's Addition Theorem]] to <math>K_0(k_m|r\mathrm{e}^{\mathrm{i}\theta}-s\mathrm{e}^{\mathrm{i}\varphi}|)</math> in the definition of <math>G(\mathbf{x};\mathbf{\xi})</math> above.
 
 
 
== [[Infinite Depth]] ==
 
 
 
In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was
 
given by [[Havelock_1955a|Havelock 1955]] as
 
<center>
 
<math>
 
\begin{matrix}
 
G(\mathbf{x};\mathbf{\xi}) &= \frac{i k_\infty}{2} e^{k_\infty (z+c)}
 
\, H_0^{(1)}(k_\infty r) + \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} \\
 
& - \frac{1}{\pi^2} \int\limits_{0}^{\infty}
 
\frac{k_\infty}{\eta^2 + k_\infty^2} \big( k_\infty \cos \eta (z+c) - \eta \sin
 
\eta (z+c) \big)  K_0(\eta r) d\eta.
 
\end{matrix}
 
</math>
 
</center>
 
It should be noted that this Green
 
function can also be written in the following closely related form,
 
<center>
 
<math>
 
\begin{matrix}
 
G(\mathbf{x};\mathbf{\xi}) & = \frac{i k_\infty}{2}  e^{k_\infty (z+c)}
 
\, H_0^{(1)}(k_\infty r) + \frac{1}{4 \pi R_0} \\
 
& + \frac{1}{2 \pi^2} \int\limits_{0}^{\infty}
 
\frac{(\eta^2 - k_\infty^2) \cos \eta (z+c) + 2 \eta k_\infty \sin
 
\eta (z+c)}{\eta^2 + k_\infty^2}  K_0(\eta r) d\eta
 
\end{matrix}
 
</math>
 
</center>
 
[[Linton_McIver_2001a|Linton and McIver 2001]]. An equivalent representation is due to
 
[[Kim_1965a|Kim 1965]] for <math>r>0</math>, although implicitly given in the work of
 
[[Havelock_1955a|Havelock 1955]], and is given by
 
<center>
 
<math>
 
G(\mathbf{x};\mathbf{\xi}) = \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1}
 
- \frac{k_\infty}{4} e^{k_\infty (z+c)} \Big(\mathbf{H}_0(k_\infty r) +
 
Y_0(k_\infty r) - 2i J_0 (k_\infty r)  + \frac{2}{\pi}
 
\int\limits_{z+c}^0 \frac{e^{-k_\infty \eta}}{\sqrt{r^2 + \eta^2}}
 
d\eta \Big),
 
</math>
 
</center>
 
where <math>J_0</math> and <math>Y_0</math> are the Bessel functions  of order zero
 
of the first and second
 
kind and <math>\mathbf{H}_0</math> is the Struve function of order zero.
 
 
 
The expression due to [[Peter_Meylan_2004b|Peter and Meylan 2004]] is
 
<center>
 
<math>
 
G(\mathbf{x};\mathbf{\xi}) = \frac{i k_\infty}{2} e^{k_\infty (z+c)}
 
h_0^{(1)}(k_\infty r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos
 
\eta z + \frac{k_\infty}{\eta} \sin \eta z \Big)
 
\frac{\eta^2}{\eta^2+k_\infty^2} \Big( \cos \eta c  +
 
\frac{k_\infty}{\eta} \sin \eta c \Big)  K_0(\eta r) d\eta.
 
</math>
 
</center>
 
[[Category:Linear Water-Wave Theory]]
 

Revision as of 14:22, 14 June 2007

Introduction

The Free-Surface Green function is one of the most important objects in linear water wave theory. It forms the basis on many of the numerical solutions, especially for bodies of arbitrary geometry. It first appeared in John 1949 and John 1950. It is based on the Frequency Domain Problem. The exact form of the Green function depends on whether we assume the solution is proportional to [math]\displaystyle{ \exp(i\omega t) }[/math] or [math]\displaystyle{ \exp(-i\omega t) }[/math].

There are many different representations for the Green function.

Equations for the Green function

The Free-Surface Green function is a function which satisfies the following equation (in Finite Depth)

[math]\displaystyle{ \nabla_{\mathbf{x}}^{2}G(\mathbf{x},\mathbf{\xi})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty\lt z\lt 0 }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z}=0, \, z=-h, }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z} = k_{\infty}G,\,z=0. }[/math]

where [math]\displaystyle{ k_{\infty} }[/math] is the wavenumber in Infinite Depth which is given by [math]\displaystyle{ k_{\infty}=\omega^2/g }[/math] where [math]\displaystyle{ g }[/math] is gravity. We also require a condition as [math]\displaystyle{ \mathbf{x} \to \infty }[/math] which is the Sommerfeld Radiation Condition. This depends on whether we assume that the solution is proportional to [math]\displaystyle{ \exp(i\omega t) }[/math] or [math]\displaystyle{ \exp(-i\omega t) }[/math]. We assume [math]\displaystyle{ \exp(i\omega t) }[/math] through out this.

We define [math]\displaystyle{ \mathbf{x}=(x,y,z) }[/math] and [math]\displaystyle{ \mathbf{\xi}=(a,b,c) }[/math]

Two Dimensional Representations

Many expressions for the Green function have been given. We present here a derivation for finite depth based on an Eigenfunction Matching Method. We write the Green function as

[math]\displaystyle{ G(x) = \sum_{n=0}^\infty a_n(x)f_n(z) }[/math]

where

[math]\displaystyle{ f_n(z)=\frac{\cos(k_n(z h))}{N_n} }[/math]

[math]\displaystyle{ k_n }[/math] are the roots of the Dispersion Relation for a Free Surface

[math]\displaystyle{ k_\infty k_n\tan{(k_n h)}= 0\, }[/math]

with [math]\displaystyle{ k_0 }[/math] being purely imaginary with negative imaginary part and [math]\displaystyle{ k_n, }[/math] [math]\displaystyle{ n\geq 1 }[/math] are purely real with positive real part ordered with increasing size. [math]\displaystyle{ N_n }[/math] is chosen so that the eigenfunctions are orthonormal, i.e.,

[math]\displaystyle{ \int_{-h}^{0} f_m(z) f_n(z)dz = \delta_{mn}.\, }[/math]

and are given by

[math]\displaystyle{ N_n = \sqrt{\frac{\cos(k_nh)\sin(k_nh) k_nh}{2k_n}} }[/math]

The Green function as written needs to only satisfy the condition

[math]\displaystyle{ (\partial_x^2 \partial_z^2 )G = \delta(x-a)\delta(z-c). }[/math]

We can expand the delta function as

[math]\displaystyle{ \delta(z-c)=\sum_{n=0}^\infty f_n(z)f_n(c). }[/math]

Therefore we can derive the equation

[math]\displaystyle{ \sum_{n=0}^\infty (\partial_x^2 - k_n^2 )a_n(x)f_n(z)= \delta(x-a)\sum_{n=0}^\infty f_n(z)f_n(c). }[/math]

so that we must solve

[math]\displaystyle{ (\partial_x^2 - k_n^2 )a_n(x) = \delta(x-a)f_n(c). }[/math]

This has solution

[math]\displaystyle{ a_n(x) = -\frac{e^{-|x-a|k_n}f_n(c)}{2 k_n}. }[/math]

The Green function can therefore be written as

[math]\displaystyle{ G(x) = \sum_{n=0}^\infty -\frac{e^{-|x-a|k_n}}{2 k_n}f_n(c)f_n(z) }[/math]

It can be written using the expression for [math]\displaystyle{ N_n }[/math] as

[math]\displaystyle{ G(\mathbf{x},\mathbf{\zeta}) = \sum_{n=0}^\infty -\frac{e^{-|x-a|k_n}}{\cos(k_nh)\sin(k_nh) k_nh} \cos(k_n(z h))\cos(k_n(c h)) }[/math]

We can use the Dispersion Relation for a Free Surface which the roots [math]\displaystyle{ k_n }[/math] satisfy to show that [math]\displaystyle{ k_\infty^2 k_n^2 = \sec^2k_n h }[/math] so that we can write the Green function as

[math]\displaystyle{ G(\mathbf{x},\mathbf{\zeta}) = \sum_{n=0}^\infty \frac{(k_\infty^2 k_n^2)e^{-|x-a|k_n}}{k_\infty - (k_\infty^2 k_n^2)k_nh } \cos(k_n(z h))\cos(k_n(c h)) }[/math]

This form is numerically advantageous.

Incident at an angle

In some situations the potential may have a simple [math]\displaystyle{ e^{i k_y y} }[/math] dependence (so that it is pseudo two-dimensional). This is used to allows waves to be incident at an angle. We require the Green function to satisfy the following equation

[math]\displaystyle{ \left(\partial_x^2 \partial_z^2 - k_y^2\right) G(\mathbf{x},\mathbf{\xi})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty\lt z\lt 0 }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z}=0, \, z=-h, }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z} = k_{\infty}\phi,\,z=0. }[/math]

The Green function be derived exactly as before except we have to include [math]\displaystyle{ k_y }[/math]

[math]\displaystyle{ G(\mathbf{x},\mathbf{\zeta}) = \sum_{n=0}^\infty -\frac{k_n}{\sqrt{k_n^2 k_y^2}} \frac{e^{-|x-a|\sqrt{k_n^2 k_y^2}}}{\cos(k_nh)\sin(k_nh) k_nh} \cos(k_n(z h))\cos(k_n(c h)) }[/math]

Infinite Depth

The Green function for infinite depth can be derived from the expression for finite depth by taking the limit as [math]\displaystyle{ h\to\infty }[/math] and converting the sum to an integral using the Riemann sum. Alternatively, the expression can be derived using Fourier Tranform

Three Dimensional Representations

Let [math]\displaystyle{ (r,\theta) }[/math] be spherical coordinates such that

[math]\displaystyle{ x - a = r \cos \theta,\, }[/math]

[math]\displaystyle{ y - b = r \sin \theta,\, }[/math]

and let [math]\displaystyle{ R_0 }[/math] and [math]\displaystyle{ R_1 }[/math] denote the distance from the source point [math]\displaystyle{ \mathbf{\xi} = (a,b,c) }[/math] and the distance from the mirror source point [math]\displaystyle{ \bar{\mathbf{\xi}} = (a,b,-c) }[/math] respectively, [math]\displaystyle{ R_0^2 = (x-a)^2 (y-b)^2 (z-c)^2 }[/math] and [math]\displaystyle{ R_1^2 = (x-a)^2 (y-b)^2 (z c)^2 }[/math].

Finite Depth

The most important representation of the finite depth free surface Green function is the eigenfunction expansion given by John 1950. He wrote the Green function in the following form

<math> \begin{matrix} G(\mathbf{x};\mathbf{\xi})