Difference between revisions of "Free-Surface Green Function for a Floating Elastic Plate"

From WikiWaves
Jump to navigationJump to search
Line 4: Line 4:
 
= Two Dimensions =
 
= Two Dimensions =
  
They first define a function <math>\chi(x,z)</math> representing  
+
The Green function <math>G(x,z)</math> representing  
outgoing waves as <math>|x|\rightarrow \infty</math> which satisfies
+
outgoing waves as <math>|x|\rightarrow \infty</math> satisfies
  
 
<math>
 
<math>
(\nabla^2 - k_y^2)\chi = 0, -h<z<0, -\infty<x<\infty,{eq:chi1}
+
\nabla^2 G = 0, -h<z<0,  
 
</math>
 
</math>
  
 
<math>
 
<math>
{\frac{\partial\chi}{\partial z} } =0, z=-h, -\infty<x<\infty,
+
\frac{\partial G}{\partial z} =0, z=-h,
 
</math>
 
</math>
  
 
<math>
 
<math>
{\left( \beta \left(\frac{\partial^2}{\partial x^2} - k^2_y\right)^2 -  
+
{\left( \beta \frac{\partial^4}{\partial x^4} -  
\gamma\alpha + 1\right)\frac{\partial \chi}{\partial z} - \alpha\chi }
+
\gamma\alpha + 1\right)\frac{\partial \chi}{\partial z} - \alpha G}
  = \delta(x), z=0,-\infty<x<\infty,{L}
+
  = \delta(x), z=0,
 
</math>
 
</math>
 +
 +
(note we are only considering singularities at the free surface).
  
 
This problem can be solved to give
 
This problem can be solved to give
  
 
<math>
 
<math>
\chi(x,z) = -i\sum_{n=-2}^\infty\frac{\sin{(k(n)h)}\cos{(k(n)(z-h))}}{2\alpha C_n}e^{-\kappa(n)|x|},
+
G(x,z) = -i\sum_{n=-2}^\infty\frac{\sin{(k_n h)}\cos{(k(n)(z-h))}}{2\alpha C_n}e^{-k_n|x|},
 
</math>
 
</math>
  
Line 33: Line 35:
 
</math>
 
</math>
  
and <math>k(n)</math> are the solutions of the [[Dispersion Relation for a Floating Elastic Plate]].
+
and <math>k_n</math> are the solutions of the [[Dispersion Relation for a Floating Elastic Plate]],
 +
with <math>n=-1,-2</math> corresponding to the complex solutions with positive real part,
 +
<math>n=0</math> corresponding to the imaginary solution with positive imaginary part and
 +
<math>n>0</math> corresponding to the real solutions with positive real part.

Revision as of 11:19, 30 May 2006

This is a special version of the free-surface Green function which applied when the Floating Elastic Plate boundary condition applies at the free-surface

Two Dimensions

The Green function [math]\displaystyle{ G(x,z) }[/math] representing outgoing waves as [math]\displaystyle{ |x|\rightarrow \infty }[/math] satisfies

[math]\displaystyle{ \nabla^2 G = 0, -h\lt z\lt 0, }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z} =0, z=-h, }[/math]

[math]\displaystyle{ {\left( \beta \frac{\partial^4}{\partial x^4} - \gamma\alpha + 1\right)\frac{\partial \chi}{\partial z} - \alpha G} = \delta(x), z=0, }[/math]

(note we are only considering singularities at the free surface).

This problem can be solved to give

[math]\displaystyle{ G(x,z) = -i\sum_{n=-2}^\infty\frac{\sin{(k_n h)}\cos{(k(n)(z-h))}}{2\alpha C_n}e^{-k_n|x|}, }[/math]

where

[math]\displaystyle{ C_n=\frac{1}{2}\left(h + \frac{(5\beta k(n)^4 + 1 - \alpha\gamma)\sin^2{(k(n)h)}}{\alpha}\right), }[/math]

and [math]\displaystyle{ k_n }[/math] are the solutions of the Dispersion Relation for a Floating Elastic Plate, with [math]\displaystyle{ n=-1,-2 }[/math] corresponding to the complex solutions with positive real part, [math]\displaystyle{ n=0 }[/math] corresponding to the imaginary solution with positive imaginary part and [math]\displaystyle{ n\gt 0 }[/math] corresponding to the real solutions with positive real part.