Difference between revisions of "Generalized Eigenfunction Expansion for Water Waves for a Fixed Body"

From WikiWaves
Jump to navigationJump to search
 
(47 intermediate revisions by 3 users not shown)
Line 1: Line 1:
=Introduction=
+
{{complete pages}}
  
This paper presents a ''generalized eigenfunction''  expansion for
+
== Introduction ==
the time-dependent two-dimensional problem of linear water-wave
+
 
scattering by fixed bodies. We derive a simple expression for the
+
The generalized eigenfunction method goes back to
expansion of the time-dependent motion, in terms of the solutions for
+
the work of [[Povzner 1953]] and [[Ikebe 1960]].  The generalized eigenfunction
a single frequency.  The generalized eigenfunction method goes back to
 
the work of [[povzner53,ikebe60]].  The generalized eigenfunction
 
 
method has been applied to water-wave problems by
 
method has been applied to water-wave problems by
\cite{friedman_shinbrot67,hazard_lenoir02,JFM02,
+
[[Friedman and Shinbrot 1967]], [[Hazard_Lenoir2002a | Hazard and Lenoir 2002]]
  hazard_loret07,hazard_meylan07}.  These papers were focused on
+
(for the case of a rigid body in water of infinite depth)
either theoretical expressions, without numerical calculations, or to
+
and [[Meylan 2002b| Meylan 2002 ]] (for
the problem of a floating elastic plate.  The generalized
+
a thin plate on water of shallow draft). We will present here the theory for a rigid body
eigenfunction method was also applied recently to the scattering from
+
in water of finite depth.
bottom-mounted cylinders by [[meylan_eatocktaylor09]].
+
rms of this solutions (which we call the generalised
 
+
eigenfunctions) because they solve for
The generalized eigenfunction expansion method provides an alternative
 
to other time-domain methods, such as the memory-effect method
 
\citep[Chapter 7]{mei89}, the time-dependent Green function method
 
\citep[Chapter 6]{stoker57}, or the Laplace Transform (which is
 
closely related to the memory effect method \citep{ogilvie64,
 
  meylan_sturova09}). The generalized eigenfunction method has the
 
advantage of calculating the solution from the single frequency
 
solutions for an incident wave, without any time stepping.  The
 
Laplace transform requires the solution of an equation with non-zero
 
free surface for each frequency. The memory effect method and the
 
time-dependent Green function method require explicit time stepping of
 
the solution.
 
  
 
The generalized eigenfunction method is based on an inner product in
 
The generalized eigenfunction method is based on an inner product in
Line 37: Line 23:
 
this is done, we can derive simple expressions which allow the
 
this is done, we can derive simple expressions which allow the
 
time-domain problem to be solved in terms of the single-frequency
 
time-domain problem to be solved in terms of the single-frequency
solutions.  The mathematical ideas here have appeared previously in
+
solutions.  The mathematical ideas are discussed in detail in
[[hazard_loret07]]. However the emphasis here is not on proving the
+
[[Hazard and Loret 2007]].  
expansion, nor do we emphasise the role of the diagonalizing
 
transformation derived from the eigenfunction, nor do we formally
 
prove the self-adjointness of the operator or discuss the exact nature
 
of the solution space. Instead, we use a normalizing condition
 
involving the Dirac delta function to derive our expressions for the
 
surface elevation, in keeping with our aim of developing numerical methods.
 
The presentation here is in terms of the second-order equations. A
 
derivation in terms of system of two first-order equations (without
 
numerical calculations) was given in [[meylan08]], however the
 
second-order equation in a single variable which is presented here is
 
much simpler.
 
 
  
=Equations for fixed bodies in the time domain=
+
{{Equations for fixed bodies in the time domain}}
  
We consider a two-dimensional fluid domain of constant depth, which
+
== Equations in the Frequency Domain  ==
contains a finite number of fixed bodies of arbitrary geometry. We
 
denote the fluid domain by <math>\Omega</math>, the boundary of the fluid domain
 
which touches the fixed bodies by <math>\partial\Omega</math>, and the free
 
surface by <math>F.</math> The <math>x</math> and <math>z</math> coordinates are such that <math>x</math> is
 
pointing in the horizontal direction and <math>z</math> is pointing in the
 
vertical upwards direction (we denote <math>\mathbf{x}=\left( x,z\right) ).</math> The
 
free surface is at <math>z=0</math> and the sea floor is at <math>z=-h</math> (the theory
 
would be almost identical if the sea floor depth varied within some
 
finite region and was at <math>z=-h</math> outside this region). The equations
 
of motion in the time domain are
 
  
<center><math>
+
{{frequency definition}}
\Delta\Phi\left(  \mathbf{x,}t\right)  =0,\ \ \mathbf{x}\in\Omega,
 
(1)
 
</math></center>
 
<center><math>
 
\partial_{n}\Phi=0,\ \ \mathbf{x}\in\partial\Omega,
 
</math></center>
 
<center><math>
 
\partial_{n}\Phi=0,\ \ z=-h,
 
</math></center>
 
where <math>\Phi</math> is the velocity potential for the fluid.  At the free
 
surface we have the kinematic condition
 
<center><math>
 
\partial_{t}\zeta=\partial_{n}\Phi,\ \ z=0,\ x\in F,
 
</math></center>
 
and the dynamic condition (the linearized Bernoulli equation)
 
<center><math>
 
\zeta = -\partial_{t}\Phi,\ \ z=0,\ x\in F,(2)
 
</math></center>
 
  
where <math>\zeta</math> is the free-surface elevation.  Equations
+
{{velocity potential in frequency domain}}
\eqref{laplace_time} to \eqref{dynamic_time} are in non-dimensional
 
form (so that the fluid density and gravity are both unity).  They are
 
also subject to initial conditions
 
<center><math>
 
  (3)
 
  \left.\zeta\right|_{t=0} = \zeta_0(x)\,\,\,\mathrm{and}\,\,\,
 
\left.\partial_t\zeta\right|_{t=0} = v_0(x).
 
</math></center>
 
Figure~4 is a schematic
 
diagram of the problem.
 
  
\begin{figure}
+
The equations are the following
\begin{center}
 
\begin{pspicture}(0,0)(8,6)
 
  
\psline[linewidth=2pt](0,1)(7.5,1)
+
{{standard linear wave scattering equations without body condition}}
\psline[linewidth=2pt](0,5)(7.5,5)
+
{{frequency domain equations for a rigid body}}
\rput[l](6,3){\Large<math>\Delta\Phi = 0</math>}
 
\rput[1](6.5,5.3){<math>\partial_t \zeta = \partial_n\Phi</math>}
 
\rput[l](0,5.3){<math>\partial_t \Phi = - \zeta</math>}
 
\rput[l](5,1.5){<math>\partial_n \Phi =0 </math>}
 
\rput[l](3.35,2.5){<math>\partial_n \Phi =0 </math>}
 
\rput[l](2,4){<math>\partial_n \Phi =0</math>}
 
\rput[l](4.5,4){<math>\partial\Omega</math>}
 
\rput[l](2,1.5){<math>\partial\Omega</math>}
 
\rput[l](1,3){\Large <math>\Omega</math>}
 
\rput[l](7.7,5.1){<math>z=0</math>}
 
\rput[l](7.7,1.1){<math>z=-h</math>}
 
\pscurve[linewidth=2pt, fillstyle=solid, fillcolor=lightgray,
 
    showpoints=false](5,5)(4,4)(2,5)
 
\psccurve[linewidth=2pt, fillstyle=solid, fillcolor=lightgray,
 
    showpoints=false](3,3)(2,2)(3,2)
 
\end{pspicture}
 
\end{center}
 
\caption{Schematic diagram showing the time-dependent equations}
 
(4)
 
\end{figure}  
 
  
  
==Single frequency equations==
+
{{incident plane wave}}
  
The single frequency solution is based on the assumption that all
+
{{sommerfeld radiation condition two dimensions}}
time-dependence is given by <math>\mathrm{e}^{-\mathrm{i}\omega t}</math> and that the system is
 
excited by an incident wave.  We can then write
 
<center><math>
 
\Phi\left(  \mathbf{x},t\right)  ={\Phi}_\kappa\left(  \mathbf{x},\omega\right) 
 
\mathrm{e}^{-\mathrm{i}\omega t},\ \ \ =and= \ \ \ \zeta\left(
 
x,t\right)  ={\zeta}_\kappa\left(  x,\omega\right)  \mathrm{e}^{-\mathrm{i}\omega
 
t},
 
</math></center>
 
where <math>\kappa=1</math> for waves excited by an incident wave from the left
 
and <math>-1</math> for waves incident from the right.
 
Under these assumptions, equations (1) to (2)\ become
 
  
<center><math>
 
\Delta{\Phi}_\kappa\left(  \mathbf{x,}\omega\right)  =0,\ \ \mathbf{x}\in
 
\Omega,(5)
 
</math></center>
 
<center><math>
 
\partial_{n}{\Phi}_\kappa=0,\ \ \mathbf{x}\in\partial\Omega,
 
</math></center>
 
<center><math>
 
\partial_{n}{\Phi}_\kappa=0,\ \ z=-h,
 
</math></center>
 
<center><math>
 
-\mathrm{i}\omega{\zeta}_\kappa=\partial_{n}{\Phi}_\kappa,\ \ z=0,\ x\in F,
 
</math></center>
 
<center><math>
 
{\zeta}_\kappa = \mathrm{i}\omega{\Phi}_\kappa,\ \ z=0,\ x\in F.(6)
 
</math></center>
 
 
We must also specify radiations conditions, which are given
 
by
 
 
<center><math>
 
{\Phi}_1=\frac{1}{\mathrm{i} \omega} \left(
 
\mathrm{e}^{\mathrm{i} kx} + R_1 e^{-\mathrm{i} k x} \right)\frac{\cosh k\left(  z+h\right)
 
}{\cosh kh},
 
\,\,\,\mathrm{as}\,\,x\to-\infty,
 
</math></center>
 
<center><math>
 
{\Phi}_1=\frac{1}{\mathrm{i} \omega}
 
T_1\mathrm{e}^{\mathrm{i} kx}\frac{\cosh k\left(  z+h\right)  }{\cosh kh},
 
\,\,\,\mathrm{as}\,\,x\to\infty,
 
</math></center>
 
<center><math>
 
{\Phi}_{-1}=\frac{1}{\mathrm{i} \omega}
 
T_{-1}\mathrm{e}^{-\mathrm{i} kx}
 
\frac{\cosh k\left(  z+h\right)  }{\cosh kh},
 
\,\,\,\mathrm{as}\,\,x\to\infty,
 
</math></center>
 
<center><math>
 
{\Phi}_{-1}=\frac{1}{\mathrm{i} \omega}
 
\left(
 
\mathrm{e}^{-\mathrm{i} kx} + R_{-1} e^{\mathrm{i} k x} \right)\frac{\cosh k\left(  z+h\right)
 
}{\cosh kh},
 
\,\,\,\mathrm{as}\,\,x\to-\infty.
 
</math></center>
 
  
Note that <math>R_{\kappa}</math> and <math>T_{\kappa}</math> are the reflection and
+
== Time domain calculations ==
transmission coefficients respectively and that we have normalized so
 
that the amplitude (in displacement) is unity. The wavenumber <math>k</math> is
 
the positive real solution of the dispersion equation </math>k\tanh
 
kh=\omega^{2}<math>, and we will consider both </math>k(\omega)<math> and </math>\omega(k)<math>
 
in what follows as required.  The solution of the single-frequency
 
equation may be computationally challenging and for the generalized
 
eigenfunction expansion the major numerical work is to determine the
 
single-frequency solutions. We do not discuss here methods to find the
 
single-frequency solution.  Details of various methods can be found in
 
[[newman77, mei89,linton_mciver01]].
 
 
 
 
 
=Time domain calculations=
 
  
 
The solution in the frequency domain can be used to construct the
 
The solution in the frequency domain can be used to construct the
Line 210: Line 56:
 
transform.
 
transform.
  
==Calculation in the time domain for arbitrary initial conditions==
+
We begin with the equations in the time domain subject to the initial conditions given by
 
+
Denoting the potential at the surface by
We begin with the equations in the time domain (1) to
 
(2), subject to the initial conditions given by
 
\eqref{initial}. Denoting the potential at the surface by
 
 
<center><math>
 
<center><math>
\phi(x,t)=\left.\Phi\left(\mathbf{x},t\right)\right|_{z=0},
+
\psi(x,t)=\left.\Phi\left(\mathbf{x},t\right)\right|_{z=0},
 
</math></center>
 
</math></center>
 
we introduce the operator <math>\mathbf{G}</math> which maps the surface
 
we introduce the operator <math>\mathbf{G}</math> which maps the surface
 
potential to the potential throughout the fluid domain. The operator
 
potential to the potential throughout the fluid domain. The operator
 
<math>\mathbf{G}\psi</math> is found by solving
 
<math>\mathbf{G}\psi</math> is found by solving
 
 
<center><math>\begin{matrix}
 
<center><math>\begin{matrix}
 
\Delta\Psi\left(  \mathbf{x}\right)  & = 0,\ \ \mathbf{x}\in\Omega,\\
 
\Delta\Psi\left(  \mathbf{x}\right)  & = 0,\ \ \mathbf{x}\in\Omega,\\
Line 228: Line 70:
 
\Psi & =\psi,\ \ z  = 0,\ x\in F,
 
\Psi & =\psi,\ \ z  = 0,\ x\in F,
 
\end{matrix}</math></center>
 
\end{matrix}</math></center>
 
+
and is defined by <math>\mathbf{G}\psi=\Psi.</math> The operator  
and is defined by <math>\mathbf{G}\psi=\Psi.</math> The operator </math>\partial
+
<math>\partial_{n}\mathbf{G}</math>, which maps the surface potential to the normal
_{n}\mathbf{G}<math>, which maps the surface potential to the normal
 
 
derivative of potential at the surface (called the
 
derivative of potential at the surface (called the
 
Dirichlet-to-Neumann map) is given by
 
Dirichlet-to-Neumann map) is given by
Line 236: Line 77:
 
\partial_{n}\mathbf{G}\psi=\left.  \partial_{n}\Psi\right\vert _{z=0}.
 
\partial_{n}\mathbf{G}\psi=\left.  \partial_{n}\Psi\right\vert _{z=0}.
 
</math></center>
 
</math></center>
Therefore equations (1) to (2)
+
Therefore the equations in the time domain can be written as
can be written as
 
 
<center><math>
 
<center><math>
 
\partial_{t}^2 \zeta + \partial_{n}\mathbf{G} \zeta = 0.
 
\partial_{t}^2 \zeta + \partial_{n}\mathbf{G} \zeta = 0.
Line 247: Line 87:
 
\left\langle \zeta,\eta \right\rangle _{\mathcal{H}}=
 
\left\langle \zeta,\eta \right\rangle _{\mathcal{H}}=
 
\int_{F}\zeta  \eta  ^{*}\,\mathrm{d} x,
 
\int_{F}\zeta  \eta  ^{*}\,\mathrm{d} x,
(7)
 
 
</math></center>
 
</math></center>
where <math> ^{*}</math> denotes complex conjugate, and we assume that this
+
where <math> *</math> denotes complex conjugate, and we assume that this
 
symmetry implies that the operator is self-adjoint.  We can prove the
 
symmetry implies that the operator is self-adjoint.  We can prove the
 
symmetry by using Green's second identity
 
symmetry by using Green's second identity
Line 266: Line 105:
 
<math>\zeta</math> and <math>\eta</math> respectively.
 
<math>\zeta</math> and <math>\eta</math> respectively.
  
 
+
== Eigenfunctions of  <math>\partial_{n}\mathbf{G}</math> ==
==Eigenfunctions of  <math>\partial_{n==\mathbf{G}</math>}
 
  
 
The eigenfunctions of <math> \partial_{n}\mathbf{G}</math> satisfy
 
The eigenfunctions of <math> \partial_{n}\mathbf{G}</math> satisfy
 
<center><math>
 
<center><math>
 
  \partial_{n}\mathbf{G} \zeta = \omega^2 \zeta.
 
  \partial_{n}\mathbf{G} \zeta = \omega^2 \zeta.
(8)
 
 
</math></center>
 
</math></center>
Equation (8) is nothing more than equations
+
 
(5) to (6). This means that to solve
+
To solve
 
for the eigenfunctions of <math>\partial_{n}\mathbf{G}</math> we need to solve
 
for the eigenfunctions of <math>\partial_{n}\mathbf{G}</math> we need to solve
 
the frequency-domain equations, and the radian frequency <math>\omega</math> is exactly
 
the frequency-domain equations, and the radian frequency <math>\omega</math> is exactly
Line 283: Line 120:
 
incident from the left and from the right).  It is possible for there
 
incident from the left and from the right).  It is possible for there
 
to exist point spectra for this operator which correspond to the
 
to exist point spectra for this operator which correspond to the
existence of a trapped mode [[mciver96]], but this case is not
+
existence of a [[Trapped Modes|trapped mode]] [[McIver 1996]]  
discussed here. Note that the presence of a trapped mode requires that
+
and the presence of a trapped mode requires that
the generalized eigenfunction expansion we derive must be modified.  
+
the generalized eigenfunction expansion we derive must be modified.
 
 
  
 
==Normalization of the Eigenfunctions==
 
==Normalization of the Eigenfunctions==
  
 
The eigenfunctions of <math>\partial_{n}\mathbf{G}</math> (with eigenvalue
 
The eigenfunctions of <math>\partial_{n}\mathbf{G}</math> (with eigenvalue
<math>\omega</math>) are denoted by <math> \zeta_{\kappa}(x,k\left( \omega\right) ) </math>.
+
<math>\omega</math>) are denoted by <math> \zeta_{\kappa}(x,k\left( \omega\right) ) </math>,
 +
where <math>\kappa = \pm 1</math> for waves incident from the left or right respectively.
 +
We must also specify radiations conditions to normalize the eigenfunctions and they are given
 +
by
 +
<center><math>
 +
{\zeta}_1 = \left(
 +
\mathrm{e}^{\mathrm{i} kx} + R_1 e^{- \mathrm{i} k x} \right)\frac{\cos k_0\left(  z+h\right)
 +
}{\cos k_0h},
 +
\,\,\,\mathrm{as}\,\,x\to-\infty,
 +
</math></center>
 +
<center><math>
 +
{\zeta}_1=
 +
T_1\mathrm{e}^{\mathrm{i} k x}\frac{\cos k_0\left(  z+h\right)  }{\cos k_0h},
 +
\,\,\,\mathrm{as}\,\,x\to\infty,
 +
</math></center>
 +
<center><math>
 +
{\zeta}_{-1} =
 +
T_{-1}\mathrm{e}^{-\mathrm{i} k x}
 +
\frac{\cos k_0\left(  z+h\right)  }{\cos k_0h},
 +
\,\,\,\mathrm{as}\,\,x\to\infty,
 +
</math></center>
 +
<center><math>
 +
{\zeta}_{-1}=
 +
\left(
 +
\mathrm{e}^{-\mathrm{i} k x} + R_{-1} e^{\mathrm{i} k x} \right)\frac{\cos k_0\left(  z+h\right)
 +
}{\cos k_0 h},
 +
\,\,\,\mathrm{as}\,\,x\to-\infty.
 +
</math></center>
 +
 
 +
Note that <math>R_{\kappa}</math> and <math>T_{\kappa}</math> are the reflection and
 +
transmission coefficients respectively and that we have normalized so
 +
that the amplitude (in displacement) is unity. Also <math>k  = -  \mathrm{i} k_0</math>.
 +
 
 +
 
 +
and we will consider both <math>k(\omega)</math> and <math>\omega(k)</math>
 +
in what follows as required.  The solution of the single-frequency
 +
equation may be computationally challenging and for the generalized
 +
eigenfunction expansion the major numerical work is to determine the
 +
single-frequency solutions.
 
As mentioned previously, determining <math>\zeta_\kappa</math> is the major
 
As mentioned previously, determining <math>\zeta_\kappa</math> is the major
 
computation of the generalized eigenfunction method, but we simply
 
computation of the generalized eigenfunction method, but we simply
Line 301: Line 175:
 
R_1 T_{-1}^{*} +  R_{-1}^{*} T_{1}=0,
 
R_1 T_{-1}^{*} +  R_{-1}^{*} T_{1}=0,
 
</math></center>
 
</math></center>
[[mei89]].
+
[[Mei 1983]].
 
It therefore follows that
 
It therefore follows that
 
<center><math>
 
<center><math>
Line 309: Line 183:
 
_{2}\right)  \delta_{\kappa\kappa^{\prime}},
 
_{2}\right)  \delta_{\kappa\kappa^{\prime}},
 
</math></center>
 
</math></center>
but we need to determine the normalizing function </math>\Lambda_{n}\left(
+
but we need to determine the normalizing function  
  \omega_{n}\right)<math>. This is achieved by using the result that the
+
<math>\Lambda_{n}\left( \omega_{n}\right)</math>. This is achieved by using the result that the
 
eigenfunctions satisfy the same normalizing condition with and without
 
eigenfunctions satisfy the same normalizing condition with and without
 
the scatterers present.  This result, the proof of which is quite
 
the scatterers present.  This result, the proof of which is quite
 
technical, is well-known and has been shown for many different
 
technical, is well-known and has been shown for many different
 
situations. The original proof was for Schr\"odinger's equation and was
 
situations. The original proof was for Schr\"odinger's equation and was
due to [[povzner53,ikebe60]]. A proof for the case of Helmholtz
+
due to [[Povzner 1953]] and [[Ikebe 1960]]. A proof for the case of Helmholtz
equation was given by [[wilcox75]].  Recently the proof was given
+
equation was given by [[Wilcox 1975]].  Recently the proof was given
for water waves by [[hazard_lenoir02,hazard_loret07]].
+
for water waves by [[Hazard and Lenoir 2002]] and [[Hazard and Loret 2007]].
  
 
Since the eigenfunctions satisfy the same normalizing condition with
 
Since the eigenfunctions satisfy the same normalizing condition with
Line 331: Line 205:
 
  & =2\pi \delta_{\kappa\kappa^{\prime}}\delta\left(  k_{1}-k_{2}\right)  \\
 
  & =2\pi \delta_{\kappa\kappa^{\prime}}\delta\left(  k_{1}-k_{2}\right)  \\
 
  &  =2\pi\delta_{\kappa\kappa^{\prime}}\delta\left(  \omega_{1}-\omega_{2}\right)
 
  &  =2\pi\delta_{\kappa\kappa^{\prime}}\delta\left(  \omega_{1}-\omega_{2}\right)
\left.  \frac{d\omega}{dk}\right\vert _{\omega=\omega_{1}}.
+
\left.  \frac{\mathrm{d}\omega}{\mathrm{d}k}\right\vert _{\omega=\omega_{1}}.
 
\end{matrix}</math></center>
 
\end{matrix}</math></center>
 
This result allows us to calculate the time-dependent solution in the
 
This result allows us to calculate the time-dependent solution in the
Line 347: Line 221:
 
g_{\kappa}\left(  \omega\right)  
 
g_{\kappa}\left(  \omega\right)  
 
\frac{\sin(\omega t)}{\omega}\right\}   
 
\frac{\sin(\omega t)}{\omega}\right\}   
\zeta_{\kappa}(x,k)  d\omega,
+
\zeta_{\kappa}(x,k)  \mathrm{d}\omega,
(9)
 
 
</math></center>
 
</math></center>
 
where <math>f_\kappa</math> and <math>g_\kappa</math> will be determined from the initial
 
where <math>f_\kappa</math> and <math>g_\kappa</math> will be determined from the initial
Line 359: Line 232:
 
\zeta_0\left(  x\right)
 
\zeta_0\left(  x\right)
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi f_{\kappa}\left(
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi f_{\kappa}\left(
\omega\right) \frac{d\omega}{dk},
+
\omega\right) \frac{\mathrm{d}\omega}{\mathrm{d}k},
 
</math></center>
 
</math></center>
 
and
 
and
 
<center><math>
 
<center><math>
 
\left\langle  
 
\left\langle  
v_0\left(  x\right)
+
\partial_t\zeta_0\left(  x\right)
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi g_{\kappa}\left(
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi g_{\kappa}\left(
\omega\right) \frac{d\omega}{dk}.
+
\omega\right) \frac{\mathrm{d}\omega}{\mathrm{d}k}.
 
</math></center>
 
</math></center>
We can therefore write equation \eqref{expansion}, changing the
+
We can therefore write, changing the
 
variable of integration to <math>k</math>, as
 
variable of integration to <math>k</math>, as
\begin{multline}
+
<center><math>
 
\zeta\left(  x,t\right)
 
\zeta\left(  x,t\right)
 
  =\frac{1}{2\pi}\int_{\mathbb{R}^{+}}  \sum_{\kappa\in\left\{  -1,1\right\}}
 
  =\frac{1}{2\pi}\int_{\mathbb{R}^{+}}  \sum_{\kappa\in\left\{  -1,1\right\}}
Line 376: Line 249:
 
\left\langle \zeta_0\left(  x\right)
 
\left\langle \zeta_0\left(  x\right)
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}
\cos(\omega t)\\
+
\cos(\omega t)
 
+ \left\langle  
 
+ \left\langle  
v_0\left(  x\right)
+
\partial_t \zeta_0\left(  x\right)
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}
 
\frac{\sin(\omega t)}{\omega}\Big\}   
 
\frac{\sin(\omega t)}{\omega}\Big\}   
\zeta_{\kappa}(x,k)  dk,
+
\zeta_{\kappa}(x,k)  \mathrm{d}k,
(10)
+
</math></center>
\end{multline}
 
  
If we take the case when <math>v_0( x) =0</math> and
+
If we take the case when <math>\partial_t\zeta_0( x) =0</math> and
 
write the integral given by the inner product explicitly, we obtain  
 
write the integral given by the inner product explicitly, we obtain  
 
<center><math>
 
<center><math>
Line 391: Line 263:
 
-1,1\right\}  }\left(  \frac{1}{2\pi}\int_{F}\zeta_0\left(  x^{\prime}\right)
 
-1,1\right\}  }\left(  \frac{1}{2\pi}\int_{F}\zeta_0\left(  x^{\prime}\right)
 
  \zeta_{\kappa}(x^{\prime},k)  ^{*}\,\mathrm{d} x^{\prime}\right)  
 
  \zeta_{\kappa}(x^{\prime},k)  ^{*}\,\mathrm{d} x^{\prime}\right)  
  \zeta_{\kappa}(x,k)\Big\}\cos(\omega t)dk.(11)
+
  \zeta_{\kappa}(x,k)\Big\}\cos(\omega t)\mathrm{d}k.
 
</math></center>
 
</math></center>
  
 +
== Case of a  [[Trapped Modes|trapped mode]] ==
  
 
+
If the scattering structure supports a [[Trapped Modes|trapped mode]] at a particular
 
+
frequency <math>\omega_{0}</math> then the expression for the free-surface elevation becomes
 
+
<center><math>
 
+
\zeta\left(  x,t\right)  =\int_{\mathbb{R}^{+}}\Big\{  \sum_{\kappa\in\left\{
 
+
-1,1\right\}  }\left(  \frac{1}{2\pi}\int_{F}\zeta_0\left(  x^{\prime}\right)
 
+
\zeta_{\kappa}(x^{\prime},k)  ^{*}\,\mathrm{d} x^{\prime}\right)
 
+
\zeta_{\kappa}(x,k)\Big\}\cos(\omega t)\mathrm{d}k + \left(\frac{\int_{F}\zeta_{0}(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }
 
+
{\int_{F}\tilde\zeta(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }\right)\tilde\zeta(x)\cos(\omega_{0} t)
 
+
</math></center>
 
+
<center><math>
 
+
+ \int_{\mathbb{R}^{+}}\Big\{  \sum_{\kappa\in\left\{
 
+
-1,1\right\}  }\left(  \frac{1}{2\pi}\int_{F}\partial_t\zeta_0\left(  x^{\prime}\right)
 
+
\zeta_{\kappa}(x^{\prime},k)  ^{*}\,\mathrm{d} x^{\prime}\right)
 +
\zeta_{\kappa}(x,k)\Big\}\frac{\sin(\omega t)}{\omega} \mathrm{d}k
 +
+ \left(\frac{\int_{F}
 +
\partial_t\zeta_{0}(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }{\int_{F}
 +
\tilde\zeta(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }\right)\tilde\zeta(x)\frac{\sin(\omega_{0} t)}{\omega_0}
 +
</math></center>
 +
where <math>\tilde\zeta(x)</math> is the trapped mode free-surface elevation. This
 +
formula can be extend to the case when there is more than one trapped mode.
  
 
==An identity linking waves from the left and right==
 
==An identity linking waves from the left and right==
Line 421: Line 301:
 
must be purely real. This can only be true if
 
must be purely real. This can only be true if
 
<center><math>
 
<center><math>
(13)
 
 
   \Im \left\{ \zeta_{1}(x^\prime,k)^{*} \zeta_{1}(x,k)  \right\}
 
   \Im \left\{ \zeta_{1}(x^\prime,k)^{*} \zeta_{1}(x,k)  \right\}
 
=  
 
=  
Line 427: Line 306:
 
\,\,\,x,x^{\prime} \in F.
 
\,\,\,x,x^{\prime} \in F.
 
</math></center>
 
</math></center>
To the best of the author's knowledge, this result has not appeared
 
previously.
 
 
=Results=
 
 
We present here results for a very simple geometry, so that
 
frequency domain calculations are straightforward. We consider a pair
 
of rigid plates of negligible thickness with the boundary of the
 
structure given by
 
<center><math>
 
\partial\Omega = \{-L_2\leq x \leq -L_1, z=-d\}\cup
 
\{L_1\leq x \leq L_2, z=-d\}.
 
</math></center>
 
The method used to solve the equations is based on the matched
 
eigenfunction expansion method.  Full details and computer code can be
 
found on [[meylan_wikiwaves]]  and the problem is also discussed
 
in [[linton_evans91]].  The initial displacement is given by
 
<center><math>
 
\zeta_0(x) =
 
\exp(-4x^2)\,\,\,\mathrm{and}\,\,\,v_0(x)=0.
 
(14)
 
</math></center>
 
We fix the water depth <math>h=-2</math>, the dock lengths are <math>L_1=1</math> and <math>L_2=1.75</math>.
 
We consider the case when <math>d=0</math> (Figure 15),
 
<math>d=0.1</math> (Figure 16), and
 
<math>d=0.2</math> (Figure 17). Note that the
 
dock is also shown as a dark line in the figures, but this is
 
only shown for illustrative purposes and has no relationship with
 
the free surface. The solutions are also shown in Movie 1 and Movie 4 and
 
Movie 5. Further solutions with different dock lengths and submergences
 
are illustrated in Movies 2, 3, and 6.
 
These figures show interesting resonant effects, which are
 
strongly a function of the depth of submergence.
 
 
\begin{figure}
 
\begin{center}
 
\psfrag{x}[][][0.8]{<math>x</math>} \psfrag{xi}[][][0.8]{<math>\zeta</math>}
 
\psfrag{t = 0}[][][0.8]{<math>t = 0</math>} \psfrag{t = 25}[][][0.8]{<math>t = 25</math>}
 
\psfrag{t = 5}[][][0.8]{<math>t = 5</math>} \psfrag{t = 30}[][][0.8]{<math>t = 30</math>}
 
\psfrag{t = 10}[][][0.8]{<math>t = 10</math>} \psfrag{t = 35}[][][0.8]{<math>t = 35</math>}
 
\psfrag{t = 15}[][][0.8]{<math>t = 15</math>} \psfrag{t = 40}[][][0.8]{<math>t = 40</math>}
 
\psfrag{t = 20}[][][0.8]{<math>t = 20</math>}
 
\includegraphics[width=12cm]{figures/large_dock}
 
\end{center}
 
\caption{The surface displacement for the initial conditions given
 
  by equation \eqref{initial_figure} for the times shown.  The water
 
  depth is <math>h=-2</math>, and the dock lengths are <math>L_1=1</math> and <math>L_2=1.75</math>. The
 
  dock submergence is <math>d=0</math>. The dock
 
  position is shown by the dark line for illustrative purposes only. }
 
(15)
 
\end{figure}
 
 
\begin{figure}
 
\begin{center}
 
\psfrag{x}[][][0.8]{<math>x</math>} \psfrag{xi}[][][0.8]{<math>\zeta</math>}
 
\psfrag{t = 0}[][][0.8]{<math>t = 0</math>} \psfrag{t = 25}[][][0.8]{<math>t = 25</math>}
 
\psfrag{t = 5}[][][0.8]{<math>t = 5</math>} \psfrag{t = 30}[][][0.8]{<math>t = 30</math>}
 
\psfrag{t = 10}[][][0.8]{<math>t = 10</math>} \psfrag{t = 35}[][][0.8]{<math>t = 35</math>}
 
\psfrag{t = 15}[][][0.8]{<math>t = 15</math>} \psfrag{t = 40}[][][0.8]{<math>t = 40</math>}
 
\psfrag{t = 20}[][][0.8]{<math>t = 20</math>}
 
\includegraphics[width=12cm]{figures/submerged_large_dockd0p1}
 
\end{center}
 
\caption{As in Figure 15, except that the dock
 
  submergence is <math>d=0.1</math>.}
 
(16)
 
\end{figure}
 
 
\begin{figure}
 
\begin{center}
 
\psfrag{x}[][][0.8]{<math>x</math>} \psfrag{xi}[][][0.8]{<math>\zeta</math>}
 
\psfrag{t = 0}[][][0.8]{<math>t = 0</math>} \psfrag{t = 25}[][][0.8]{<math>t = 25</math>}
 
\psfrag{t = 5}[][][0.8]{<math>t = 5</math>} \psfrag{t = 30}[][][0.8]{<math>t = 30</math>}
 
\psfrag{t = 10}[][][0.8]{<math>t = 10</math>} \psfrag{t = 35}[][][0.8]{<math>t = 35</math>}
 
\psfrag{t = 15}[][][0.8]{<math>t = 15</math>} \psfrag{t = 40}[][][0.8]{<math>t = 40</math>}
 
\psfrag{t = 20}[][][0.8]{<math>t = 20</math>}
 
\includegraphics[width=12cm]{figures/submerged_large_dockd0p2}
 
\end{center}
 
\caption{As in Figure 15, except that the dock
 
  submergence is <math>d=0.2</math>.}
 
(17)
 
\end{figure}
 
 
=Summary=
 
 
We have considered the time-dependent problem of a two-dimensional
 
domain with fixed bodies. We have shown that the solution in the
 
time-domain can be calculated from the single-frequency solutions
 
using a generalized eigenfunction expansion. The resulting formula for
 
the time-dependent solution is relatively simple, and involves an
 
integral over the free surface and an integral in frequency.  The method
 
outlined here would generalize easily to other situations, such as
 
three dimensions or floating rather than fixed bodies.
 
 
\section*{Acknowledgements}
 
 
This research was supported by Marsden grant UOO308
 
from the New Zealand government. The author
 
would also like to thank Dr. Garry Tee for his editorial assistance.
 
\bibliographystyle{jfm}
 
\bibliography{/home/groups/seaice/bibdata/mike,/home/groups/seaice/bibdata/master}
 
 
 
 
\appendix
 
 
=Solution for twin submerged docks=
 
 
We give a brief account of the solution for a pair of submerged docks in
 
the frequency domain.  This is based on the solution given in
 
[[linton_evans91]]. Further details and computer code can be found
 
on [[meylan_wikiwaves]].  While we have concentrated on expressing
 
the solution in terms of the displacements, the eigenfunctions
 
<math>\zeta_\kappa</math> cannot be found without solving for the potential
 
throughout the fluid domain.  The boundary value problem can be
 
expressed as
 
 
<center><math>
 
\Delta\Phi_\kappa=0, \,\, -h<z<0,
 
</math></center>
 
<center><math>
 
\partial_n\Phi_{\kappa}=0, \,\, z=-h,
 
</math></center>
 
<center><math>
 
\partial_n\Phi_\kappa=\omega^2\Phi_\kappa, \,\, z=0,
 
</math></center>
 
<center><math>
 
\partial_z\phi=0, \,\, z=-d,\,-L_2<x<-L_1,\,\,\mathrm{and}\,\,L_1<x<L_2,
 
</math></center>
 
 
subject to an incident plane wave coming from negative infinity.
 
We use the eigenfunction matching method  coupled with
 
symmetry, which allows us decompose the solutions into an symmetric
 
(<math>\Phi_{s}</math>) and an anti-symmetric solution (<math>\Phi_{a}</math>). Details of
 
this method can be found in [[linton_mciver01]]. It is
 
interesting to note that these solutions are orthogonal with respect
 
to the inner product given by equation \eqref{inner_product} and we
 
could use these in our generalized eigenfunction expansion.  However,
 
this decomposition is only useful when the body geometry has symmetry,
 
in which case we are reduced to having only to solve for the potential
 
in a half space.  The solutions for waves incident from the left and
 
right can be found as
 
<center><math>
 
\Phi_1 = \frac{1}{2}\left(\Phi_{s} + \Phi_{a}\right),
 
\,\,\, \mathrm{and} \,\,\, \Phi_{-1} = \frac{1}{2}\left(\Phi_{s} - \Phi_{a}\right).
 
</math></center>
 
 
The symmetric solution can be written as
 
<center><math>
 
\Phi_{s}(x,z)=
 
\left\{
 
\begin{matrix}[c]{l}
 
{
 
\frac{1}{\mathrm{i} \omega}} e^{-k_{0}^h (x+L)}\phi_{0}^h\left(
 
z\right) + \sum_{m=0}^{\infty}a_{m}^{s}e^{k_{m}^h x}\phi_{m}^h(z), \;\;x<-L_2
 
\\
 
\sum_{m=0}^{\infty}b_{m}^{s}
 
e^{-k_{m}^d (x+L)}\phi_{m}^d(z)
 
+ \sum_{m=0}^{\infty}c_{m}^{s}
 
e^{k_{m}^d (x-L)}\phi_{m}^d(z)
 
, \;\;-d<z<0,\,-L_2<x<-L_1,
 
\\
 
d_0^{s}\frac{x+L_1}{L_2-L_1}  + \sum_{m=1}^{\infty}d_{m}^{s}
 
e^{\kappa_{m} (x+L)}\psi_{m}(z)
 
+ e_0^{s}\frac{x+L_2}{L_2-L_1}
 
\\
 
\quad\quad + \sum_{m=1}^{\infty}e_{m}^{s}
 
e^{-\kappa_{m} (x-L)}\psi_{m}(z)
 
, \;\;-h<z<-d,\,-L_2<x<-L_1,
 
\\
 
\sum_{m=0}^{\infty}f_{m}^{s}\frac{\cosh(k_{m}^h x)}{\cosh(k_m^h L)}\phi_{m}^h(z), \;\;-L_1<x<0,
 
\end{matrix}
 
\right.
 
</math></center>
 
where
 
<math>k_n^l</math> are the roots of the dispersion relation for a free surface
 
<center><math>
 
k \tan(kl) = -\omega^2.
 
</math></center>
 
We denote the
 
positive imaginary solutions by <math>k_{0}^l</math> and
 
the positive real solutions by <math>k_{m}^l</math>, <math>m\geq1</math> (ordered with increasing
 
imaginary part) and
 
<math>\kappa_{m}=m\pi/(h-d)</math>. We define
 
<center><math>
 
\phi_{m}^l\left(  z\right)  = \frac{\cos k_{m}(z+l)}{\cos k_{m}l},\quad m\geq0,
 
</math></center>
 
as the vertical eigenfunction of the potential in the open
 
water regions and
 
<center><math>
 
\psi_{m}\left(  z\right)  = \cos\kappa_{m}(z+h),\quad
 
m\geq 0,
 
</math></center>
 
as the vertical eigenfunction of the potential in the dock
 
region.  The anti-symmetric solution is the same, except that the
 
last term is a ratio of <math>\sinh</math> rather than <math>\cosh</math>.  We solve by
 
truncating the expansions and matching the potential and the <math>x</math>
 
derivative of the potential at the boundaries <math>x=-L_2</math> and <math>x=-L_1</math>.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 +
== Matlab Code ==
  
  
 +
*A program to solve two small docks [http://www.math.auckland.ac.nz/~meylan/code/gem/gem_two_small_dock.m gem_two_small_dock.m]
 +
with output shown on the right
  
 +
[[Image:Small dock gem2.gif|300px|right|thumb|The evolution of an initial surface displacement, with two docks
 +
as shown]]
  
 +
=== Additional code ===
  
 +
This program requires
  
 
+
* {{k_integrate}}
 
+
* {{two docks eigenfunction matching symmetry}}
 
+
* {{free surface dispersion equation code}}
 
+
* {{gif_add_frame}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The theory of generalised eigenfunction is described in [[Hazard_Lenoir2002a | Hazard and Lenoir 2002]]
 
and [[Meylan 2002b| Meylan 2002 ]] for the case of a rigid body in water of infinite depth and for
 
a thin plate on water of shallow draft respectively. We will present here the theory for a rigid body
 
in water of finite depth.
 
 
 
= Outline of the theory =
 
 
 
We consider the case of a rigid body in water of finite depth. The time-dependent equations
 
of motion are (in some non-dimensional variables)
 
 
 
<math>\nabla^2 \phi = 0</math>
 
 
 
<math>\phi_n - g \frac{\partial^2\phi}{\partial t^2}  = 0, x\in F</math>
 
 
 
<math>\phi_n  = 0, x\in \Gamma</math>
 
 
 
where <math>F</math> is the free-surface and <math>\Gamma</math> is the wetted body surface.
 
We now have to transform this equation by introducing the Direchlet-Neuman map which gives
 
 
 
 
 
 
 
We can solve
 
the single frequency problem with frequency <math>\omega</math> for an incident wave
 
travelling from <math>-\infty</math>
 
 
 
<math>\phi^i = e^{i \omega x} </math>
 
 
 
to obtain a solution <math>\phi(\omega,x)</math>. This looks like an incident plus reflected
 
wave as <math> x\to -\infty</math> and like a transmitted wave as <math> x\to -\infty</math>.
 
We call these solutions generalised eigenfunctions.
 
We then try and expand the solution in terms of this solutions (which we call the generalised
 
eigenfunctions) because they solve for
 
 
 
[[Generalised Eigenfunction Expansion for a Elastic Plate on Shallow Water]]
 
  
 
[[Category:Time-Dependent Linear Water Waves]]
 
[[Category:Time-Dependent Linear Water Waves]]

Latest revision as of 00:26, 25 February 2010


Introduction

The generalized eigenfunction method goes back to the work of Povzner 1953 and Ikebe 1960. The generalized eigenfunction method has been applied to water-wave problems by Friedman and Shinbrot 1967, Hazard and Lenoir 2002 (for the case of a rigid body in water of infinite depth) and Meylan 2002 (for a thin plate on water of shallow draft). We will present here the theory for a rigid body in water of finite depth. rms of this solutions (which we call the generalised eigenfunctions) because they solve for

The generalized eigenfunction method is based on an inner product in which the evolution operator is self-adjoint. It follows from the self-adjointness that we can expand the solution in the eigenfunctions of the operator. These eigenfunctions are nothing more than the single-frequency solutions. The main difficulty is that the eigenfunctions are associated with a continuous spectrum, and this requires that they be carefully normalized. Once this is done, we can derive simple expressions which allow the time-domain problem to be solved in terms of the single-frequency solutions. The mathematical ideas are discussed in detail in Hazard and Loret 2007.


We consider a two-dimensional fluid domain of constant depth, which contains a finite number of fixed bodies of arbitrary geometry. We denote the fluid domain by [math]\displaystyle{ \Omega }[/math], the boundary of the fluid domain which touches the fixed bodies by [math]\displaystyle{ \partial\Omega }[/math], and the free surface by [math]\displaystyle{ F. }[/math] The [math]\displaystyle{ x }[/math] and [math]\displaystyle{ z }[/math] coordinates are such that [math]\displaystyle{ x }[/math] is pointing in the horizontal direction and [math]\displaystyle{ z }[/math] is pointing in the vertical upwards direction (we denote [math]\displaystyle{ \mathbf{x}=\left( x,z\right) ). }[/math] The free surface is at [math]\displaystyle{ z=0 }[/math] and the sea floor is at [math]\displaystyle{ z=-h }[/math]. The fluid motion is described by a velocity potential [math]\displaystyle{ \Phi }[/math] and free surface by [math]\displaystyle{ \zeta }[/math].

The equations of motion in the time domain are Laplace's equation through out the fluid

[math]\displaystyle{ \Delta\Phi\left( \mathbf{x,}t\right) =0,\ \ \mathbf{x}\in\Omega. }[/math]

At the bottom surface we have no flow

[math]\displaystyle{ \partial_{n}\Phi=0,\ \ z=-h. }[/math]

At the free surface we have the kinematic condition

[math]\displaystyle{ \partial_{t}\zeta=\partial_{n}\Phi,\ \ z=0,\ x\in \partial\Omega_{F}, }[/math]

and the dynamic condition (the linearized Bernoulli equation)

[math]\displaystyle{ \partial_{t}\Phi = -g\zeta ,\ \ z=0,\ x\in \partial\Omega_{F}. }[/math]

The body boundary condition for a fixed body is

[math]\displaystyle{ \partial_{n}\Phi=0,\ \ \mathbf{x}\in\partial\Omega, }[/math]


The initial conditions are

[math]\displaystyle{ \left.\zeta\right|_{t=0} = \zeta_0(x)\,\,\,\mathrm{and}\,\,\, \left.\partial_t\zeta\right|_{t=0} = \partial_t\zeta_0(x). }[/math]

Equations in the Frequency Domain

We also assume that Frequency Domain Problem with frequency [math]\displaystyle{ \omega }[/math] and we assume that all variables are proportional to [math]\displaystyle{ \exp(-\mathrm{i}\omega t)\, }[/math]

The water motion is represented by a velocity potential which is denoted by [math]\displaystyle{ \phi\, }[/math] so that

[math]\displaystyle{ \Phi(\mathbf{x},t) = \mathrm{Re} \left\{\phi(\mathbf{x},\omega)e^{-\mathrm{i} \omega t}\right\}. }[/math]

The equations are the following

[math]\displaystyle{ \begin{align} \Delta\phi &=0, &-h\lt z\lt 0,\,\,\mathbf{x} \in \Omega \\ \partial_z\phi &= 0, &z=-h, \\ \partial_z \phi &= \alpha \phi, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]


(note that the last expression can be obtained from combining the expressions:

[math]\displaystyle{ \begin{align} \partial_z \phi &= -\mathrm{i} \omega \zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \\ \mathrm{i} \omega \phi &= g\zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]

where [math]\displaystyle{ \alpha = \omega^2/g \, }[/math]) The body boundary condition for a rigid body is just

[math]\displaystyle{ \partial_{n}\phi=0,\ \ \mathbf{x}\in\partial\Omega_{\mathrm{B}}, }[/math]


The equation is subject to some radiation conditions at infinity. We assume the following. [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,

[math]\displaystyle{ \phi^{\mathrm{I}}(x,z)=A \phi_0(z) e^{\mathrm{i} k x} \, }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and

[math]\displaystyle{ \phi_0(z) =\frac{\cosh k(z+h)}{\cosh k h} }[/math]

In two-dimensions the Sommerfeld Radiation Condition is

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|} - \mathrm{i} k \right) (\phi-\phi^{\mathrm{{I}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ \phi^{\mathrm{{I}}} }[/math] is the incident potential.


Time domain calculations

The solution in the frequency domain can be used to construct the solution in the time domain. This is well-known for the case of a plane incident wave which is initially far from the body, and in this case the solution can be calculated straightforwardly using the standard Fourier transform. However, when we consider an initial displacement which is non-zero around the bodies, we cannot express the time-dependent solution in terms of the single frequency solutions by a standard Fourier transform.

We begin with the equations in the time domain subject to the initial conditions given by Denoting the potential at the surface by

[math]\displaystyle{ \psi(x,t)=\left.\Phi\left(\mathbf{x},t\right)\right|_{z=0}, }[/math]

we introduce the operator [math]\displaystyle{ \mathbf{G} }[/math] which maps the surface potential to the potential throughout the fluid domain. The operator [math]\displaystyle{ \mathbf{G}\psi }[/math] is found by solving

[math]\displaystyle{ \begin{matrix} \Delta\Psi\left( \mathbf{x}\right) & = 0,\ \ \mathbf{x}\in\Omega,\\ \partial_{n}\Psi & = 0,\ \ \mathbf{x}\in\partial\Omega,\\ \partial_{n}\Psi & = 0,\ \ z=-h,\\ \Psi & =\psi,\ \ z = 0,\ x\in F, \end{matrix} }[/math]

and is defined by [math]\displaystyle{ \mathbf{G}\psi=\Psi. }[/math] The operator [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math], which maps the surface potential to the normal derivative of potential at the surface (called the Dirichlet-to-Neumann map) is given by

[math]\displaystyle{ \partial_{n}\mathbf{G}\psi=\left. \partial_{n}\Psi\right\vert _{z=0}. }[/math]

Therefore the equations in the time domain can be written as

[math]\displaystyle{ \partial_{t}^2 \zeta + \partial_{n}\mathbf{G} \zeta = 0. }[/math]

where we can recover the potential using the operator [math]\displaystyle{ \mathbf{G} }[/math]. The evolution operator [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] is symmetric in the Hilbert space given by the following inner product

[math]\displaystyle{ \left\langle \zeta,\eta \right\rangle _{\mathcal{H}}= \int_{F}\zeta \eta ^{*}\,\mathrm{d} x, }[/math]

where [math]\displaystyle{ * }[/math] denotes complex conjugate, and we assume that this symmetry implies that the operator is self-adjoint. We can prove the symmetry by using Green's second identity

[math]\displaystyle{ \begin{matrix} \int_{F}\left( \partial_{n}\mathbf{G}\zeta \right) \left( \eta\right) ^{*}\,\mathrm{d} x &=\int_{F}\left( \partial_{n}\mathbf{G}\partial_t\phi \right) \left( \partial_t\psi\right) ^{*}\,\mathrm{d} x \\ &=\int_{F}\left( \partial_t\phi \right) \left( \partial_{n}\mathbf{G} \partial_t\psi\right) ^{*}\,\mathrm{d} x \\ &=\int_{F}\left( \zeta \right) \left( \partial_{n}\mathbf{G}\eta\right) ^{*}\,\mathrm{d} x, \end{matrix} }[/math]

where [math]\displaystyle{ \phi }[/math] and [math]\displaystyle{ \psi }[/math] are the surface potentials associated with [math]\displaystyle{ \zeta }[/math] and [math]\displaystyle{ \eta }[/math] respectively.

Eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math]

The eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] satisfy

[math]\displaystyle{ \partial_{n}\mathbf{G} \zeta = \omega^2 \zeta. }[/math]

To solve for the eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] we need to solve the frequency-domain equations, and the radian frequency [math]\displaystyle{ \omega }[/math] is exactly the eigenvalue. To actually calculate the eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] we need to specify the incident wave potential, and for each frequency we have two eigenfunctions (waves incident from the left and from the right). It is possible for there to exist point spectra for this operator which correspond to the existence of a trapped mode McIver 1996 and the presence of a trapped mode requires that the generalized eigenfunction expansion we derive must be modified.

Normalization of the Eigenfunctions

The eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] (with eigenvalue [math]\displaystyle{ \omega }[/math]) are denoted by [math]\displaystyle{ \zeta_{\kappa}(x,k\left( \omega\right) ) }[/math], where [math]\displaystyle{ \kappa = \pm 1 }[/math] for waves incident from the left or right respectively. We must also specify radiations conditions to normalize the eigenfunctions and they are given by

[math]\displaystyle{ {\zeta}_1 = \left( \mathrm{e}^{\mathrm{i} kx} + R_1 e^{- \mathrm{i} k x} \right)\frac{\cos k_0\left( z+h\right) }{\cos k_0h}, \,\,\,\mathrm{as}\,\,x\to-\infty, }[/math]
[math]\displaystyle{ {\zeta}_1= T_1\mathrm{e}^{\mathrm{i} k x}\frac{\cos k_0\left( z+h\right) }{\cos k_0h}, \,\,\,\mathrm{as}\,\,x\to\infty, }[/math]
[math]\displaystyle{ {\zeta}_{-1} = T_{-1}\mathrm{e}^{-\mathrm{i} k x} \frac{\cos k_0\left( z+h\right) }{\cos k_0h}, \,\,\,\mathrm{as}\,\,x\to\infty, }[/math]
[math]\displaystyle{ {\zeta}_{-1}= \left( \mathrm{e}^{-\mathrm{i} k x} + R_{-1} e^{\mathrm{i} k x} \right)\frac{\cos k_0\left( z+h\right) }{\cos k_0 h}, \,\,\,\mathrm{as}\,\,x\to-\infty. }[/math]

Note that [math]\displaystyle{ R_{\kappa} }[/math] and [math]\displaystyle{ T_{\kappa} }[/math] are the reflection and transmission coefficients respectively and that we have normalized so that the amplitude (in displacement) is unity. Also [math]\displaystyle{ k = - \mathrm{i} k_0 }[/math].


and we will consider both [math]\displaystyle{ k(\omega) }[/math] and [math]\displaystyle{ \omega(k) }[/math] in what follows as required. The solution of the single-frequency equation may be computationally challenging and for the generalized eigenfunction expansion the major numerical work is to determine the single-frequency solutions. As mentioned previously, determining [math]\displaystyle{ \zeta_\kappa }[/math] is the major computation of the generalized eigenfunction method, but we simply assume that they are known. We know that the eigenfunctions are orthogonal for different [math]\displaystyle{ \omega }[/math] (from the self-adjointness of [math]\displaystyle{ \partial_n\mathbf{G} }[/math]), and that the waves incident from the left and right with the same [math]\displaystyle{ \omega }[/math] are orthogonal from the identity

[math]\displaystyle{ R_1 T_{-1}^{*} + R_{-1}^{*} T_{1}=0, }[/math]

Mei 1983. It therefore follows that

[math]\displaystyle{ \left\langle \left( {\zeta}_{\kappa}(x,k\left( \omega_{1}\right) )\right) ,{\zeta}_{\kappa^{\prime}}(x,k\left( \omega_{2}\right) )\right\rangle _{\mathcal{H} }=\Lambda_{n}\left( \omega_{1}\right) \delta\left( \omega_{1}-\omega _{2}\right) \delta_{\kappa\kappa^{\prime}}, }[/math]

but we need to determine the normalizing function [math]\displaystyle{ \Lambda_{n}\left( \omega_{n}\right) }[/math]. This is achieved by using the result that the eigenfunctions satisfy the same normalizing condition with and without the scatterers present. This result, the proof of which is quite technical, is well-known and has been shown for many different situations. The original proof was for Schr\"odinger's equation and was due to Povzner 1953 and Ikebe 1960. A proof for the case of Helmholtz equation was given by Wilcox 1975. Recently the proof was given for water waves by Hazard and Lenoir 2002 and Hazard and Loret 2007.

Since the eigenfunctions satisfy the same normalizing condition with and without the scatterers, we normalize with the scatterers absent. This means that the eigenfunctions are simply the incident waves, and the free surface [math]\displaystyle{ F }[/math] is the entire axis. This allows us to derive

[math]\displaystyle{ \begin{matrix} \left\langle \left( {\zeta}_{\kappa}(x,k\left( \omega_{1}\right) )\right) ,{\zeta}_{\kappa^{\prime}}(x,k\left( \omega_{2}\right) )\right\rangle _{\mathcal{H}} &= \int_{\mathbb{R}}\left( e^{\kappa\mathrm{i} k_{1} x}\right) \left( e^{\kappa^{\prime}\mathrm{i} k_{2}x}\right) ^{*}\,\mathrm{d} x \\ & =2\pi \delta_{\kappa\kappa^{\prime}}\delta\left( k_{1}-k_{2}\right) \\ & =2\pi\delta_{\kappa\kappa^{\prime}}\delta\left( \omega_{1}-\omega_{2}\right) \left. \frac{\mathrm{d}\omega}{\mathrm{d}k}\right\vert _{\omega=\omega_{1}}. \end{matrix} }[/math]

This result allows us to calculate the time-dependent solution in the eigenfunctions (or single-frequency solutions).

Expansion in Eigenfunctions

We expand the solution for the displacement in the time domain as

[math]\displaystyle{ \zeta\left( x,t\right) =\int_{\mathbb{R}^{+}} \sum_{\kappa\in\left\{ -1,1\right\}} \left\{ f_{\kappa}\left( \omega\right) \cos(\omega t)+ g_{\kappa}\left( \omega\right) \frac{\sin(\omega t)}{\omega}\right\} \zeta_{\kappa}(x,k) \mathrm{d}\omega, }[/math]

where [math]\displaystyle{ f_\kappa }[/math] and [math]\displaystyle{ g_\kappa }[/math] will be determined from the initial conditions. Note that here, and in subsequent equations, we are assuming that [math]\displaystyle{ k }[/math] is a function of [math]\displaystyle{ \omega }[/math] or that [math]\displaystyle{ \omega }[/math] is a function of [math]\displaystyle{ k }[/math] as required. If we take the inner product with respect to the eigenfunctions [math]\displaystyle{ \zeta_\kappa }[/math] we obtain

[math]\displaystyle{ \left\langle \zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi f_{\kappa}\left( \omega\right) \frac{\mathrm{d}\omega}{\mathrm{d}k}, }[/math]

and

[math]\displaystyle{ \left\langle \partial_t\zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi g_{\kappa}\left( \omega\right) \frac{\mathrm{d}\omega}{\mathrm{d}k}. }[/math]

We can therefore write, changing the variable of integration to [math]\displaystyle{ k }[/math], as

[math]\displaystyle{ \zeta\left( x,t\right) =\frac{1}{2\pi}\int_{\mathbb{R}^{+}} \sum_{\kappa\in\left\{ -1,1\right\}} \Big\{ \left\langle \zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}} \cos(\omega t) + \left\langle \partial_t \zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}} \frac{\sin(\omega t)}{\omega}\Big\} \zeta_{\kappa}(x,k) \mathrm{d}k, }[/math]

If we take the case when [math]\displaystyle{ \partial_t\zeta_0( x) =0 }[/math] and write the integral given by the inner product explicitly, we obtain

[math]\displaystyle{ \zeta\left( x,t\right) =\int_{\mathbb{R}^{+}}\Big\{ \sum_{\kappa\in\left\{ -1,1\right\} }\left( \frac{1}{2\pi}\int_{F}\zeta_0\left( x^{\prime}\right) \zeta_{\kappa}(x^{\prime},k) ^{*}\,\mathrm{d} x^{\prime}\right) \zeta_{\kappa}(x,k)\Big\}\cos(\omega t)\mathrm{d}k. }[/math]

Case of a trapped mode

If the scattering structure supports a trapped mode at a particular frequency [math]\displaystyle{ \omega_{0} }[/math] then the expression for the free-surface elevation becomes

[math]\displaystyle{ \zeta\left( x,t\right) =\int_{\mathbb{R}^{+}}\Big\{ \sum_{\kappa\in\left\{ -1,1\right\} }\left( \frac{1}{2\pi}\int_{F}\zeta_0\left( x^{\prime}\right) \zeta_{\kappa}(x^{\prime},k) ^{*}\,\mathrm{d} x^{\prime}\right) \zeta_{\kappa}(x,k)\Big\}\cos(\omega t)\mathrm{d}k + \left(\frac{\int_{F}\zeta_{0}(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} } {\int_{F}\tilde\zeta(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }\right)\tilde\zeta(x)\cos(\omega_{0} t) }[/math]
[math]\displaystyle{ + \int_{\mathbb{R}^{+}}\Big\{ \sum_{\kappa\in\left\{ -1,1\right\} }\left( \frac{1}{2\pi}\int_{F}\partial_t\zeta_0\left( x^{\prime}\right) \zeta_{\kappa}(x^{\prime},k) ^{*}\,\mathrm{d} x^{\prime}\right) \zeta_{\kappa}(x,k)\Big\}\frac{\sin(\omega t)}{\omega} \mathrm{d}k + \left(\frac{\int_{F} \partial_t\zeta_{0}(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }{\int_{F} \tilde\zeta(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }\right)\tilde\zeta(x)\frac{\sin(\omega_{0} t)}{\omega_0} }[/math]

where [math]\displaystyle{ \tilde\zeta(x) }[/math] is the trapped mode free-surface elevation. This formula can be extend to the case when there is more than one trapped mode.

An identity linking waves from the left and right

A consequence of the requirement that the displacement be real, if the initial displacement and initial derivative of displacement is real, is that

[math]\displaystyle{ \sum_{\kappa\in\left\{ -1,1\right\}} \left\langle \zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}} \zeta_{\kappa}(x,k), }[/math]

must be purely real. This can only be true if

[math]\displaystyle{ \Im \left\{ \zeta_{1}(x^\prime,k)^{*} \zeta_{1}(x,k) \right\} = - \Im \left\{ \zeta_{-1}(x^\prime,k)^{*} \zeta_{-1}(x,k) \right\}, \,\,\,x,x^{\prime} \in F. }[/math]

Matlab Code

with output shown on the right

The evolution of an initial surface displacement, with two docks as shown

Additional code

This program requires