Difference between revisions of "Generalized Eigenfunction Expansion for Water Waves for a Fixed Body"

From WikiWaves
Jump to navigationJump to search
 
(41 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{complete pages}}
 +
 
== Introduction ==
 
== Introduction ==
  
 
The generalized eigenfunction method goes back to
 
The generalized eigenfunction method goes back to
the work of [[P ovzner 1953]] and [[Ikebe 1060]].  The generalized eigenfunction
+
the work of [[Povzner 1953]] and [[Ikebe 1960]].  The generalized eigenfunction
 
method has been applied to water-wave problems by
 
method has been applied to water-wave problems by
\cite{friedman_shinbrot67,hazard_lenoir02,JFM02,
+
[[Friedman and Shinbrot 1967]], [[Hazard_Lenoir2002a | Hazard and Lenoir 2002]]
  hazard_loret07,hazard_meylan07}. 
+
(for the case of a rigid body in water of infinite depth)
 
+
and [[Meylan 2002b| Meylan 2002 ]] (for
The theory of generalised eigenfunction is described in [[Hazard_Lenoir2002a | Hazard and Lenoir 2002]]
+
a thin plate on water of shallow draft). We will present here the theory for a rigid body
and [[Meylan 2002b| Meylan 2002 ]] for the case of a rigid body in water of infinite depth and for
 
a thin plate on water of shallow draft respectively. We will present here the theory for a rigid body
 
 
in water of finite depth.  
 
in water of finite depth.  
 
rms of this solutions (which we call the generalised
 
rms of this solutions (which we call the generalised
Line 24: Line 24:
 
time-domain problem to be solved in terms of the single-frequency
 
time-domain problem to be solved in terms of the single-frequency
 
solutions.  The mathematical ideas are discussed in detail in
 
solutions.  The mathematical ideas are discussed in detail in
[[Hazard and L oret 2007]].  
+
[[Hazard and Loret 2007]].  
  
 
{{Equations for fixed bodies in the time domain}}
 
{{Equations for fixed bodies in the time domain}}
  
== Single frequency equations ==
+
== Equations in the Frequency Domain  ==
 +
 
 +
{{frequency definition}}
 +
 
 +
{{velocity potential in frequency domain}}
  
The single frequency solution is based on the assumption that all
+
The equations are the following
time-dependence is given by <math>\mathrm{e}^{\mathrm{i}\omega t}</math> and that the system is
+
 
excited by an incident wave.  We can then write
+
{{standard linear wave scattering equations without body condition}}
<center><math>
+
{{frequency domain equations for a rigid body}}
\Phi\left(  \mathbf{x},t\right)  ={\Phi}_\kappa\left(  \mathbf{x},\omega\right) 
+
 
\mathrm{e}^{-\mathrm{i}\omega t},\ \ \ \mathrm{and} \ \ \ \zeta\left(
+
 
x,t\right)  ={\zeta}_\kappa\left(  x,\omega\right)  \mathrm{e}^{-\mathrm{i}\omega
+
{{incident plane wave}}
t},
 
</math></center>
 
where <math>\kappa=1</math> for waves excited by an incident wave from the left
 
and <math>-1</math> for waves incident from the right.
 
Under these assumptions, the equations become
 
<center><math>
 
\Delta{\Phi}_\kappa\left(  \mathbf{x,}\omega\right)  =0,\ \ \mathbf{x}\in
 
\Omega,
 
</math></center>
 
<center><math>
 
\partial_{n}{\Phi}_\kappa=0,\ \ \mathbf{x}\in\partial\Omega,
 
</math></center>
 
<center><math>
 
\partial_{n}{\Phi}_\kappa=0,\ \ z=-h,
 
</math></center>
 
<center><math>
 
-\mathrm{i}\omega{\zeta}_\kappa=\partial_{n}{\Phi}_\kappa,\ \ z=0,\ x\in F,
 
</math></center>
 
<center><math>
 
{\zeta}_\kappa = \mathrm{i}\omega{\Phi}_\kappa,\ \ z=0,\ x\in F.
 
</math></center>
 
  
We must also specify radiations conditions, which are given
+
{{sommerfeld radiation condition two dimensions}}
by
 
<center><math>
 
{\Phi}_1=\frac{1}{\mathrm{i} \omega} \left(
 
\mathrm{e}^{\mathrm{i} kx} + R_1 e^{-\mathrm{i} k x} \right)\frac{\cosh k\left(  z+h\right)
 
}{\cosh kh},
 
\,\,\,\mathrm{as}\,\,x\to-\infty,
 
</math></center>
 
<center><math>
 
{\Phi}_1=\frac{1}{\mathrm{i} \omega}
 
T_1\mathrm{e}^{\mathrm{i} kx}\frac{\cosh k\left(  z+h\right)  }{\cosh kh},
 
\,\,\,\mathrm{as}\,\,x\to\infty,
 
</math></center>
 
<center><math>
 
{\Phi}_{-1}=\frac{1}{\mathrm{i} \omega}
 
T_{-1}\mathrm{e}^{-\mathrm{i} kx}
 
\frac{\cosh k\left(  z+h\right)  }{\cosh kh},
 
\,\,\,\mathrm{as}\,\,x\to\infty,
 
</math></center>
 
<center><math>
 
{\Phi}_{-1}=\frac{1}{\mathrm{i} \omega}
 
\left(
 
\mathrm{e}^{-\mathrm{i} kx} + R_{-1} e^{\mathrm{i} k x} \right)\frac{\cosh k\left(  z+h\right)
 
}{\cosh kh},
 
\,\,\,\mathrm{as}\,\,x\to-\infty.
 
</math></center>
 
  
Note that <math>R_{\kappa}</math> and <math>T_{\kappa}</math> are the reflection and
 
transmission coefficients respectively and that we have normalized so
 
that the amplitude (in displacement) is unity. The wavenumber <math>k</math> is
 
the positive real solution of the dispersion equation <math>k\tanh kh=\omega^{2}</math>,
 
and we will consider both <math>k(\omega)</math> and <math>\omega(k)</math>
 
in what follows as required.  The solution of the single-frequency
 
equation may be computationally challenging and for the generalized
 
eigenfunction expansion the major numerical work is to determine the
 
single-frequency solutions.
 
  
 
== Time domain calculations ==
 
== Time domain calculations ==
Line 110: Line 59:
 
Denoting the potential at the surface by
 
Denoting the potential at the surface by
 
<center><math>
 
<center><math>
\phi(x,t)=\left.\Phi\left(\mathbf{x},t\right)\right|_{z=0},
+
\psi(x,t)=\left.\Phi\left(\mathbf{x},t\right)\right|_{z=0},
 
</math></center>
 
</math></center>
 
we introduce the operator <math>\mathbf{G}</math> which maps the surface
 
we introduce the operator <math>\mathbf{G}</math> which maps the surface
Line 128: Line 77:
 
\partial_{n}\mathbf{G}\psi=\left.  \partial_{n}\Psi\right\vert _{z=0}.
 
\partial_{n}\mathbf{G}\psi=\left.  \partial_{n}\Psi\right\vert _{z=0}.
 
</math></center>
 
</math></center>
Therefore equations (1) to (2)
+
Therefore the equations in the time domain can be written as
can be written as
 
 
<center><math>
 
<center><math>
 
\partial_{t}^2 \zeta + \partial_{n}\mathbf{G} \zeta = 0.
 
\partial_{t}^2 \zeta + \partial_{n}\mathbf{G} \zeta = 0.
Line 140: Line 88:
 
\int_{F}\zeta  \eta  ^{*}\,\mathrm{d} x,
 
\int_{F}\zeta  \eta  ^{*}\,\mathrm{d} x,
 
</math></center>
 
</math></center>
where <math> ^{*}</math> denotes complex conjugate, and we assume that this
+
where <math> *</math> denotes complex conjugate, and we assume that this
 
symmetry implies that the operator is self-adjoint.  We can prove the
 
symmetry implies that the operator is self-adjoint.  We can prove the
 
symmetry by using Green's second identity
 
symmetry by using Green's second identity
Line 156: Line 104:
 
where <math>\phi</math> and <math>\psi</math> are the surface potentials associated with
 
where <math>\phi</math> and <math>\psi</math> are the surface potentials associated with
 
<math>\zeta</math> and <math>\eta</math> respectively.
 
<math>\zeta</math> and <math>\eta</math> respectively.
 
  
 
== Eigenfunctions of  <math>\partial_{n}\mathbf{G}</math> ==
 
== Eigenfunctions of  <math>\partial_{n}\mathbf{G}</math> ==
Line 173: Line 120:
 
incident from the left and from the right).  It is possible for there
 
incident from the left and from the right).  It is possible for there
 
to exist point spectra for this operator which correspond to the
 
to exist point spectra for this operator which correspond to the
existence of a trapped mode [[Mciver 1996]], but this case is not
+
existence of a [[Trapped Modes|trapped mode]] [[McIver 1996]]  
discussed here. Note that the presence of a trapped mode requires that
+
and the presence of a trapped mode requires that
 
the generalized eigenfunction expansion we derive must be modified.
 
the generalized eigenfunction expansion we derive must be modified.
  
Line 180: Line 127:
  
 
The eigenfunctions of <math>\partial_{n}\mathbf{G}</math> (with eigenvalue
 
The eigenfunctions of <math>\partial_{n}\mathbf{G}</math> (with eigenvalue
<math>\omega</math>) are denoted by <math> \zeta_{\kappa}(x,k\left( \omega\right) ) </math>.
+
<math>\omega</math>) are denoted by <math> \zeta_{\kappa}(x,k\left( \omega\right) ) </math>,
 +
where <math>\kappa = \pm 1</math> for waves incident from the left or right respectively.
 +
We must also specify radiations conditions to normalize the eigenfunctions and they are given
 +
by
 +
<center><math>
 +
{\zeta}_1 = \left(
 +
\mathrm{e}^{\mathrm{i} kx} + R_1 e^{- \mathrm{i} k x} \right)\frac{\cos k_0\left(  z+h\right)
 +
}{\cos k_0h},
 +
\,\,\,\mathrm{as}\,\,x\to-\infty,
 +
</math></center>
 +
<center><math>
 +
{\zeta}_1=
 +
T_1\mathrm{e}^{\mathrm{i} k x}\frac{\cos k_0\left(  z+h\right)  }{\cos k_0h},
 +
\,\,\,\mathrm{as}\,\,x\to\infty,
 +
</math></center>
 +
<center><math>
 +
{\zeta}_{-1} =
 +
T_{-1}\mathrm{e}^{-\mathrm{i} k x}
 +
\frac{\cos k_0\left(  z+h\right)  }{\cos k_0h},
 +
\,\,\,\mathrm{as}\,\,x\to\infty,
 +
</math></center>
 +
<center><math>
 +
{\zeta}_{-1}=
 +
\left(
 +
\mathrm{e}^{-\mathrm{i} k x} + R_{-1} e^{\mathrm{i} k x} \right)\frac{\cos k_0\left(  z+h\right)
 +
}{\cos k_0 h},
 +
\,\,\,\mathrm{as}\,\,x\to-\infty.
 +
</math></center>
 +
 
 +
Note that <math>R_{\kappa}</math> and <math>T_{\kappa}</math> are the reflection and
 +
transmission coefficients respectively and that we have normalized so
 +
that the amplitude (in displacement) is unity. Also <math>k  = -  \mathrm{i} k_0</math>.
 +
 
 +
 
 +
and we will consider both <math>k(\omega)</math> and <math>\omega(k)</math>
 +
in what follows as required.  The solution of the single-frequency
 +
equation may be computationally challenging and for the generalized
 +
eigenfunction expansion the major numerical work is to determine the
 +
single-frequency solutions.
 
As mentioned previously, determining <math>\zeta_\kappa</math> is the major
 
As mentioned previously, determining <math>\zeta_\kappa</math> is the major
 
computation of the generalized eigenfunction method, but we simply
 
computation of the generalized eigenfunction method, but we simply
Line 190: Line 175:
 
R_1 T_{-1}^{*} +  R_{-1}^{*} T_{1}=0,
 
R_1 T_{-1}^{*} +  R_{-1}^{*} T_{1}=0,
 
</math></center>
 
</math></center>
[[Mei 1989]].
+
[[Mei 1983]].
 
It therefore follows that
 
It therefore follows that
 
<center><math>
 
<center><math>
Line 198: Line 183:
 
_{2}\right)  \delta_{\kappa\kappa^{\prime}},
 
_{2}\right)  \delta_{\kappa\kappa^{\prime}},
 
</math></center>
 
</math></center>
but we need to determine the normalizing function </math>\Lambda_{n}\left(
+
but we need to determine the normalizing function  
  \omega_{n}\right)<math>. This is achieved by using the result that the
+
<math>\Lambda_{n}\left( \omega_{n}\right)</math>. This is achieved by using the result that the
 
eigenfunctions satisfy the same normalizing condition with and without
 
eigenfunctions satisfy the same normalizing condition with and without
 
the scatterers present.  This result, the proof of which is quite
 
the scatterers present.  This result, the proof of which is quite
 
technical, is well-known and has been shown for many different
 
technical, is well-known and has been shown for many different
 
situations. The original proof was for Schr\"odinger's equation and was
 
situations. The original proof was for Schr\"odinger's equation and was
due to [[povzner53,ikebe60]]. A proof for the case of Helmholtz
+
due to [[Povzner 1953]] and [[Ikebe 1960]]. A proof for the case of Helmholtz
equation was given by [[wilcox75]].  Recently the proof was given
+
equation was given by [[Wilcox 1975]].  Recently the proof was given
for water waves by [[hazard_lenoir02,hazard_loret07]].
+
for water waves by [[Hazard and Lenoir 2002]] and [[Hazard and Loret 2007]].
  
 
Since the eigenfunctions satisfy the same normalizing condition with
 
Since the eigenfunctions satisfy the same normalizing condition with
Line 220: Line 205:
 
  & =2\pi \delta_{\kappa\kappa^{\prime}}\delta\left(  k_{1}-k_{2}\right)  \\
 
  & =2\pi \delta_{\kappa\kappa^{\prime}}\delta\left(  k_{1}-k_{2}\right)  \\
 
  &  =2\pi\delta_{\kappa\kappa^{\prime}}\delta\left(  \omega_{1}-\omega_{2}\right)
 
  &  =2\pi\delta_{\kappa\kappa^{\prime}}\delta\left(  \omega_{1}-\omega_{2}\right)
\left.  \frac{d\omega}{dk}\right\vert _{\omega=\omega_{1}}.
+
\left.  \frac{\mathrm{d}\omega}{\mathrm{d}k}\right\vert _{\omega=\omega_{1}}.
 
\end{matrix}</math></center>
 
\end{matrix}</math></center>
 
This result allows us to calculate the time-dependent solution in the
 
This result allows us to calculate the time-dependent solution in the
Line 236: Line 221:
 
g_{\kappa}\left(  \omega\right)  
 
g_{\kappa}\left(  \omega\right)  
 
\frac{\sin(\omega t)}{\omega}\right\}   
 
\frac{\sin(\omega t)}{\omega}\right\}   
\zeta_{\kappa}(x,k)  d\omega,
+
\zeta_{\kappa}(x,k)  \mathrm{d}\omega,
(9)
 
 
</math></center>
 
</math></center>
 
where <math>f_\kappa</math> and <math>g_\kappa</math> will be determined from the initial
 
where <math>f_\kappa</math> and <math>g_\kappa</math> will be determined from the initial
Line 248: Line 232:
 
\zeta_0\left(  x\right)
 
\zeta_0\left(  x\right)
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi f_{\kappa}\left(
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi f_{\kappa}\left(
\omega\right) \frac{d\omega}{dk},
+
\omega\right) \frac{\mathrm{d}\omega}{\mathrm{d}k},
 
</math></center>
 
</math></center>
 
and
 
and
 
<center><math>
 
<center><math>
 
\left\langle  
 
\left\langle  
v_0\left(  x\right)
+
\partial_t\zeta_0\left(  x\right)
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi g_{\kappa}\left(
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi g_{\kappa}\left(
\omega\right) \frac{d\omega}{dk}.
+
\omega\right) \frac{\mathrm{d}\omega}{\mathrm{d}k}.
 
</math></center>
 
</math></center>
We can therefore write equation \eqref{expansion}, changing the
+
We can therefore write, changing the
 
variable of integration to <math>k</math>, as
 
variable of integration to <math>k</math>, as
\begin{multline}
+
<center><math>
 
\zeta\left(  x,t\right)
 
\zeta\left(  x,t\right)
 
  =\frac{1}{2\pi}\int_{\mathbb{R}^{+}}  \sum_{\kappa\in\left\{  -1,1\right\}}
 
  =\frac{1}{2\pi}\int_{\mathbb{R}^{+}}  \sum_{\kappa\in\left\{  -1,1\right\}}
Line 265: Line 249:
 
\left\langle \zeta_0\left(  x\right)
 
\left\langle \zeta_0\left(  x\right)
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}
\cos(\omega t)\\
+
\cos(\omega t)
 
+ \left\langle  
 
+ \left\langle  
v_0\left(  x\right)
+
\partial_t \zeta_0\left(  x\right)
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}
 
  ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}
 
\frac{\sin(\omega t)}{\omega}\Big\}   
 
\frac{\sin(\omega t)}{\omega}\Big\}   
\zeta_{\kappa}(x,k)  dk,
+
\zeta_{\kappa}(x,k)  \mathrm{d}k,
(10)
+
</math></center>
\end{multline}
 
  
If we take the case when <math>v_0( x) =0</math> and
+
If we take the case when <math>\partial_t\zeta_0( x) =0</math> and
 
write the integral given by the inner product explicitly, we obtain  
 
write the integral given by the inner product explicitly, we obtain  
 
<center><math>
 
<center><math>
Line 280: Line 263:
 
-1,1\right\}  }\left(  \frac{1}{2\pi}\int_{F}\zeta_0\left(  x^{\prime}\right)
 
-1,1\right\}  }\left(  \frac{1}{2\pi}\int_{F}\zeta_0\left(  x^{\prime}\right)
 
  \zeta_{\kappa}(x^{\prime},k)  ^{*}\,\mathrm{d} x^{\prime}\right)  
 
  \zeta_{\kappa}(x^{\prime},k)  ^{*}\,\mathrm{d} x^{\prime}\right)  
  \zeta_{\kappa}(x,k)\Big\}\cos(\omega t)dk.(11)
+
  \zeta_{\kappa}(x,k)\Big\}\cos(\omega t)\mathrm{d}k.
 
</math></center>
 
</math></center>
  
 +
== Case of a  [[Trapped Modes|trapped mode]] ==
  
 
+
If the scattering structure supports a [[Trapped Modes|trapped mode]] at a particular
 
+
frequency <math>\omega_{0}</math> then the expression for the free-surface elevation becomes
 
+
<center><math>
 
+
\zeta\left(  x,t\right)  =\int_{\mathbb{R}^{+}}\Big\{  \sum_{\kappa\in\left\{
 
+
-1,1\right\}  }\left(  \frac{1}{2\pi}\int_{F}\zeta_0\left(  x^{\prime}\right)
 
+
\zeta_{\kappa}(x^{\prime},k)  ^{*}\,\mathrm{d} x^{\prime}\right)
 
+
\zeta_{\kappa}(x,k)\Big\}\cos(\omega t)\mathrm{d}k + \left(\frac{\int_{F}\zeta_{0}(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }
 
+
{\int_{F}\tilde\zeta(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }\right)\tilde\zeta(x)\cos(\omega_{0} t)
 
+
</math></center>
 
+
<center><math>
 
+
+ \int_{\mathbb{R}^{+}}\Big\{  \sum_{\kappa\in\left\{
 
+
-1,1\right\}  }\left(  \frac{1}{2\pi}\int_{F}\partial_t\zeta_0\left(  x^{\prime}\right)
 
+
\zeta_{\kappa}(x^{\prime},k)  ^{*}\,\mathrm{d} x^{\prime}\right)
 +
\zeta_{\kappa}(x,k)\Big\}\frac{\sin(\omega t)}{\omega} \mathrm{d}k
 +
+ \left(\frac{\int_{F}
 +
\partial_t\zeta_{0}(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }{\int_{F}
 +
\tilde\zeta(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }\right)\tilde\zeta(x)\frac{\sin(\omega_{0} t)}{\omega_0}
 +
</math></center>
 +
where <math>\tilde\zeta(x)</math> is the trapped mode free-surface elevation. This
 +
formula can be extend to the case when there is more than one trapped mode.
  
 
==An identity linking waves from the left and right==
 
==An identity linking waves from the left and right==
Line 310: Line 301:
 
must be purely real. This can only be true if
 
must be purely real. This can only be true if
 
<center><math>
 
<center><math>
(13)
 
 
   \Im \left\{ \zeta_{1}(x^\prime,k)^{*} \zeta_{1}(x,k)  \right\}
 
   \Im \left\{ \zeta_{1}(x^\prime,k)^{*} \zeta_{1}(x,k)  \right\}
 
=  
 
=  
Line 316: Line 306:
 
\,\,\,x,x^{\prime} \in F.
 
\,\,\,x,x^{\prime} \in F.
 
</math></center>
 
</math></center>
To the best of the author's knowledge, this result has not appeared
 
previously.
 
 
=Results=
 
 
We present here results for a very simple geometry, so that
 
frequency domain calculations are straightforward. We consider a pair
 
of rigid plates of negligible thickness with the boundary of the
 
structure given by
 
<center><math>
 
\partial\Omega = \{-L_2\leq x \leq -L_1, z=-d\}\cup
 
\{L_1\leq x \leq L_2, z=-d\}.
 
</math></center>
 
The method used to solve the equations is based on the matched
 
eigenfunction expansion method.  Full details and computer code can be
 
found on [[meylan_wikiwaves]]  and the problem is also discussed
 
in [[linton_evans91]].  The initial displacement is given by
 
<center><math>
 
\zeta_0(x) =
 
\exp(-4x^2)\,\,\,\mathrm{and}\,\,\,v_0(x)=0.
 
(14)
 
</math></center>
 
We fix the water depth <math>h=-2</math>, the dock lengths are <math>L_1=1</math> and <math>L_2=1.75</math>.
 
We consider the case when <math>d=0</math> (Figure 15),
 
<math>d=0.1</math> (Figure 16), and
 
<math>d=0.2</math> (Figure 17). Note that the
 
dock is also shown as a dark line in the figures, but this is
 
only shown for illustrative purposes and has no relationship with
 
the free surface. The solutions are also shown in Movie 1 and Movie 4 and
 
Movie 5. Further solutions with different dock lengths and submergences
 
are illustrated in Movies 2, 3, and 6.
 
These figures show interesting resonant effects, which are
 
strongly a function of the depth of submergence.
 
 
\begin{figure}
 
\begin{center}
 
\psfrag{x}[][][0.8]{<math>x</math>} \psfrag{xi}[][][0.8]{<math>\zeta</math>}
 
\psfrag{t = 0}[][][0.8]{<math>t = 0</math>} \psfrag{t = 25}[][][0.8]{<math>t = 25</math>}
 
\psfrag{t = 5}[][][0.8]{<math>t = 5</math>} \psfrag{t = 30}[][][0.8]{<math>t = 30</math>}
 
\psfrag{t = 10}[][][0.8]{<math>t = 10</math>} \psfrag{t = 35}[][][0.8]{<math>t = 35</math>}
 
\psfrag{t = 15}[][][0.8]{<math>t = 15</math>} \psfrag{t = 40}[][][0.8]{<math>t = 40</math>}
 
\psfrag{t = 20}[][][0.8]{<math>t = 20</math>}
 
\includegraphics[width=12cm]{figures/large_dock}
 
\end{center}
 
\caption{The surface displacement for the initial conditions given
 
  by equation \eqref{initial_figure} for the times shown.  The water
 
  depth is <math>h=-2</math>, and the dock lengths are <math>L_1=1</math> and <math>L_2=1.75</math>. The
 
  dock submergence is <math>d=0</math>. The dock
 
  position is shown by the dark line for illustrative purposes only. }
 
(15)
 
\end{figure}
 
 
\begin{figure}
 
\begin{center}
 
\psfrag{x}[][][0.8]{<math>x</math>} \psfrag{xi}[][][0.8]{<math>\zeta</math>}
 
\psfrag{t = 0}[][][0.8]{<math>t = 0</math>} \psfrag{t = 25}[][][0.8]{<math>t = 25</math>}
 
\psfrag{t = 5}[][][0.8]{<math>t = 5</math>} \psfrag{t = 30}[][][0.8]{<math>t = 30</math>}
 
\psfrag{t = 10}[][][0.8]{<math>t = 10</math>} \psfrag{t = 35}[][][0.8]{<math>t = 35</math>}
 
\psfrag{t = 15}[][][0.8]{<math>t = 15</math>} \psfrag{t = 40}[][][0.8]{<math>t = 40</math>}
 
\psfrag{t = 20}[][][0.8]{<math>t = 20</math>}
 
\includegraphics[width=12cm]{figures/submerged_large_dockd0p1}
 
\end{center}
 
\caption{As in Figure 15, except that the dock
 
  submergence is <math>d=0.1</math>.}
 
(16)
 
\end{figure}
 
 
\begin{figure}
 
\begin{center}
 
\psfrag{x}[][][0.8]{<math>x</math>} \psfrag{xi}[][][0.8]{<math>\zeta</math>}
 
\psfrag{t = 0}[][][0.8]{<math>t = 0</math>} \psfrag{t = 25}[][][0.8]{<math>t = 25</math>}
 
\psfrag{t = 5}[][][0.8]{<math>t = 5</math>} \psfrag{t = 30}[][][0.8]{<math>t = 30</math>}
 
\psfrag{t = 10}[][][0.8]{<math>t = 10</math>} \psfrag{t = 35}[][][0.8]{<math>t = 35</math>}
 
\psfrag{t = 15}[][][0.8]{<math>t = 15</math>} \psfrag{t = 40}[][][0.8]{<math>t = 40</math>}
 
\psfrag{t = 20}[][][0.8]{<math>t = 20</math>}
 
\includegraphics[width=12cm]{figures/submerged_large_dockd0p2}
 
\end{center}
 
\caption{As in Figure 15, except that the dock
 
  submergence is <math>d=0.2</math>.}
 
(17)
 
\end{figure}
 
 
 
 
=Solution for twin submerged docks=
 
 
We give a brief account of the solution for a pair of submerged docks in
 
the frequency domain.  This is based on the solution given in
 
[[linton_evans91]]. Further details and computer code can be found
 
on [[meylan_wikiwaves]].  While we have concentrated on expressing
 
the solution in terms of the displacements, the eigenfunctions
 
<math>\zeta_\kappa</math> cannot be found without solving for the potential
 
throughout the fluid domain.  The boundary value problem can be
 
expressed as
 
 
<center><math>
 
\Delta\Phi_\kappa=0, \,\, -h<z<0,
 
</math></center>
 
<center><math>
 
\partial_n\Phi_{\kappa}=0, \,\, z=-h,
 
</math></center>
 
<center><math>
 
\partial_n\Phi_\kappa=\omega^2\Phi_\kappa, \,\, z=0,
 
</math></center>
 
<center><math>
 
\partial_z\phi=0, \,\, z=-d,\,-L_2<x<-L_1,\,\,\mathrm{and}\,\,L_1<x<L_2,
 
</math></center>
 
 
subject to an incident plane wave coming from negative infinity.
 
We use the eigenfunction matching method  coupled with
 
symmetry, which allows us decompose the solutions into an symmetric
 
(<math>\Phi_{s}</math>) and an anti-symmetric solution (<math>\Phi_{a}</math>). Details of
 
this method can be found in [[linton_mciver01]]. It is
 
interesting to note that these solutions are orthogonal with respect
 
to the inner product given by equation \eqref{inner_product} and we
 
could use these in our generalized eigenfunction expansion.  However,
 
this decomposition is only useful when the body geometry has symmetry,
 
in which case we are reduced to having only to solve for the potential
 
in a half space.  The solutions for waves incident from the left and
 
right can be found as
 
<center><math>
 
\Phi_1 = \frac{1}{2}\left(\Phi_{s} + \Phi_{a}\right),
 
\,\,\, \mathrm{and} \,\,\, \Phi_{-1} = \frac{1}{2}\left(\Phi_{s} - \Phi_{a}\right).
 
</math></center>
 
 
The symmetric solution can be written as
 
<center><math>
 
\Phi_{s}(x,z)=
 
\left\{
 
\begin{matrix}[c]{l}
 
{
 
\frac{1}{\mathrm{i} \omega}} e^{-k_{0}^h (x+L)}\phi_{0}^h\left(
 
z\right) + \sum_{m=0}^{\infty}a_{m}^{s}e^{k_{m}^h x}\phi_{m}^h(z), \;\;x<-L_2
 
\\
 
\sum_{m=0}^{\infty}b_{m}^{s}
 
e^{-k_{m}^d (x+L)}\phi_{m}^d(z)
 
+ \sum_{m=0}^{\infty}c_{m}^{s}
 
e^{k_{m}^d (x-L)}\phi_{m}^d(z)
 
, \;\;-d<z<0,\,-L_2<x<-L_1,
 
\\
 
d_0^{s}\frac{x+L_1}{L_2-L_1}  + \sum_{m=1}^{\infty}d_{m}^{s}
 
e^{\kappa_{m} (x+L)}\psi_{m}(z)
 
+ e_0^{s}\frac{x+L_2}{L_2-L_1}
 
\\
 
\quad\quad + \sum_{m=1}^{\infty}e_{m}^{s}
 
e^{-\kappa_{m} (x-L)}\psi_{m}(z)
 
, \;\;-h<z<-d,\,-L_2<x<-L_1,
 
\\
 
\sum_{m=0}^{\infty}f_{m}^{s}\frac{\cosh(k_{m}^h x)}{\cosh(k_m^h L)}\phi_{m}^h(z), \;\;-L_1<x<0,
 
\end{matrix}
 
\right.
 
</math></center>
 
where
 
<math>k_n^l</math> are the roots of the dispersion relation for a free surface
 
<center><math>
 
k \tan(kl) = -\omega^2.
 
</math></center>
 
We denote the
 
positive imaginary solutions by <math>k_{0}^l</math> and
 
the positive real solutions by <math>k_{m}^l</math>, <math>m\geq1</math> (ordered with increasing
 
imaginary part) and
 
<math>\kappa_{m}=m\pi/(h-d)</math>. We define
 
<center><math>
 
\phi_{m}^l\left(  z\right)  = \frac{\cos k_{m}(z+l)}{\cos k_{m}l},\quad m\geq0,
 
</math></center>
 
as the vertical eigenfunction of the potential in the open
 
water regions and
 
<center><math>
 
\psi_{m}\left(  z\right)  = \cos\kappa_{m}(z+h),\quad
 
m\geq 0,
 
</math></center>
 
as the vertical eigenfunction of the potential in the dock
 
region.  The anti-symmetric solution is the same, except that the
 
last term is a ratio of <math>\sinh</math> rather than <math>\cosh</math>.  We solve by
 
truncating the expansions and matching the potential and the <math>x</math>
 
derivative of the potential at the boundaries <math>x=-L_2</math> and <math>x=-L_1</math>.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 +
== Matlab Code ==
  
  
 +
*A program to solve two small docks [http://www.math.auckland.ac.nz/~meylan/code/gem/gem_two_small_dock.m gem_two_small_dock.m]
 +
with output shown on the right
  
 +
[[Image:Small dock gem2.gif|300px|right|thumb|The evolution of an initial surface displacement, with two docks
 +
as shown]]
  
 +
=== Additional code ===
  
 +
This program requires
  
[[Generalised Eigenfunction Expansion for a Elastic Plate on Shallow Water]]
+
* {{k_integrate}}
 +
* {{two docks eigenfunction matching symmetry}}
 +
* {{free surface dispersion equation code}}
 +
* {{gif_add_frame}}
  
 
[[Category:Time-Dependent Linear Water Waves]]
 
[[Category:Time-Dependent Linear Water Waves]]

Latest revision as of 00:26, 25 February 2010


Introduction

The generalized eigenfunction method goes back to the work of Povzner 1953 and Ikebe 1960. The generalized eigenfunction method has been applied to water-wave problems by Friedman and Shinbrot 1967, Hazard and Lenoir 2002 (for the case of a rigid body in water of infinite depth) and Meylan 2002 (for a thin plate on water of shallow draft). We will present here the theory for a rigid body in water of finite depth. rms of this solutions (which we call the generalised eigenfunctions) because they solve for

The generalized eigenfunction method is based on an inner product in which the evolution operator is self-adjoint. It follows from the self-adjointness that we can expand the solution in the eigenfunctions of the operator. These eigenfunctions are nothing more than the single-frequency solutions. The main difficulty is that the eigenfunctions are associated with a continuous spectrum, and this requires that they be carefully normalized. Once this is done, we can derive simple expressions which allow the time-domain problem to be solved in terms of the single-frequency solutions. The mathematical ideas are discussed in detail in Hazard and Loret 2007.


We consider a two-dimensional fluid domain of constant depth, which contains a finite number of fixed bodies of arbitrary geometry. We denote the fluid domain by [math]\displaystyle{ \Omega }[/math], the boundary of the fluid domain which touches the fixed bodies by [math]\displaystyle{ \partial\Omega }[/math], and the free surface by [math]\displaystyle{ F. }[/math] The [math]\displaystyle{ x }[/math] and [math]\displaystyle{ z }[/math] coordinates are such that [math]\displaystyle{ x }[/math] is pointing in the horizontal direction and [math]\displaystyle{ z }[/math] is pointing in the vertical upwards direction (we denote [math]\displaystyle{ \mathbf{x}=\left( x,z\right) ). }[/math] The free surface is at [math]\displaystyle{ z=0 }[/math] and the sea floor is at [math]\displaystyle{ z=-h }[/math]. The fluid motion is described by a velocity potential [math]\displaystyle{ \Phi }[/math] and free surface by [math]\displaystyle{ \zeta }[/math].

The equations of motion in the time domain are Laplace's equation through out the fluid

[math]\displaystyle{ \Delta\Phi\left( \mathbf{x,}t\right) =0,\ \ \mathbf{x}\in\Omega. }[/math]

At the bottom surface we have no flow

[math]\displaystyle{ \partial_{n}\Phi=0,\ \ z=-h. }[/math]

At the free surface we have the kinematic condition

[math]\displaystyle{ \partial_{t}\zeta=\partial_{n}\Phi,\ \ z=0,\ x\in \partial\Omega_{F}, }[/math]

and the dynamic condition (the linearized Bernoulli equation)

[math]\displaystyle{ \partial_{t}\Phi = -g\zeta ,\ \ z=0,\ x\in \partial\Omega_{F}. }[/math]

The body boundary condition for a fixed body is

[math]\displaystyle{ \partial_{n}\Phi=0,\ \ \mathbf{x}\in\partial\Omega, }[/math]


The initial conditions are

[math]\displaystyle{ \left.\zeta\right|_{t=0} = \zeta_0(x)\,\,\,\mathrm{and}\,\,\, \left.\partial_t\zeta\right|_{t=0} = \partial_t\zeta_0(x). }[/math]

Equations in the Frequency Domain

We also assume that Frequency Domain Problem with frequency [math]\displaystyle{ \omega }[/math] and we assume that all variables are proportional to [math]\displaystyle{ \exp(-\mathrm{i}\omega t)\, }[/math]

The water motion is represented by a velocity potential which is denoted by [math]\displaystyle{ \phi\, }[/math] so that

[math]\displaystyle{ \Phi(\mathbf{x},t) = \mathrm{Re} \left\{\phi(\mathbf{x},\omega)e^{-\mathrm{i} \omega t}\right\}. }[/math]

The equations are the following

[math]\displaystyle{ \begin{align} \Delta\phi &=0, &-h\lt z\lt 0,\,\,\mathbf{x} \in \Omega \\ \partial_z\phi &= 0, &z=-h, \\ \partial_z \phi &= \alpha \phi, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]


(note that the last expression can be obtained from combining the expressions:

[math]\displaystyle{ \begin{align} \partial_z \phi &= -\mathrm{i} \omega \zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \\ \mathrm{i} \omega \phi &= g\zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]

where [math]\displaystyle{ \alpha = \omega^2/g \, }[/math]) The body boundary condition for a rigid body is just

[math]\displaystyle{ \partial_{n}\phi=0,\ \ \mathbf{x}\in\partial\Omega_{\mathrm{B}}, }[/math]


The equation is subject to some radiation conditions at infinity. We assume the following. [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,

[math]\displaystyle{ \phi^{\mathrm{I}}(x,z)=A \phi_0(z) e^{\mathrm{i} k x} \, }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and

[math]\displaystyle{ \phi_0(z) =\frac{\cosh k(z+h)}{\cosh k h} }[/math]

In two-dimensions the Sommerfeld Radiation Condition is

[math]\displaystyle{ \left( \frac{\partial}{\partial|x|} - \mathrm{i} k \right) (\phi-\phi^{\mathrm{{I}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ \phi^{\mathrm{{I}}} }[/math] is the incident potential.


Time domain calculations

The solution in the frequency domain can be used to construct the solution in the time domain. This is well-known for the case of a plane incident wave which is initially far from the body, and in this case the solution can be calculated straightforwardly using the standard Fourier transform. However, when we consider an initial displacement which is non-zero around the bodies, we cannot express the time-dependent solution in terms of the single frequency solutions by a standard Fourier transform.

We begin with the equations in the time domain subject to the initial conditions given by Denoting the potential at the surface by

[math]\displaystyle{ \psi(x,t)=\left.\Phi\left(\mathbf{x},t\right)\right|_{z=0}, }[/math]

we introduce the operator [math]\displaystyle{ \mathbf{G} }[/math] which maps the surface potential to the potential throughout the fluid domain. The operator [math]\displaystyle{ \mathbf{G}\psi }[/math] is found by solving

[math]\displaystyle{ \begin{matrix} \Delta\Psi\left( \mathbf{x}\right) & = 0,\ \ \mathbf{x}\in\Omega,\\ \partial_{n}\Psi & = 0,\ \ \mathbf{x}\in\partial\Omega,\\ \partial_{n}\Psi & = 0,\ \ z=-h,\\ \Psi & =\psi,\ \ z = 0,\ x\in F, \end{matrix} }[/math]

and is defined by [math]\displaystyle{ \mathbf{G}\psi=\Psi. }[/math] The operator [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math], which maps the surface potential to the normal derivative of potential at the surface (called the Dirichlet-to-Neumann map) is given by

[math]\displaystyle{ \partial_{n}\mathbf{G}\psi=\left. \partial_{n}\Psi\right\vert _{z=0}. }[/math]

Therefore the equations in the time domain can be written as

[math]\displaystyle{ \partial_{t}^2 \zeta + \partial_{n}\mathbf{G} \zeta = 0. }[/math]

where we can recover the potential using the operator [math]\displaystyle{ \mathbf{G} }[/math]. The evolution operator [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] is symmetric in the Hilbert space given by the following inner product

[math]\displaystyle{ \left\langle \zeta,\eta \right\rangle _{\mathcal{H}}= \int_{F}\zeta \eta ^{*}\,\mathrm{d} x, }[/math]

where [math]\displaystyle{ * }[/math] denotes complex conjugate, and we assume that this symmetry implies that the operator is self-adjoint. We can prove the symmetry by using Green's second identity

[math]\displaystyle{ \begin{matrix} \int_{F}\left( \partial_{n}\mathbf{G}\zeta \right) \left( \eta\right) ^{*}\,\mathrm{d} x &=\int_{F}\left( \partial_{n}\mathbf{G}\partial_t\phi \right) \left( \partial_t\psi\right) ^{*}\,\mathrm{d} x \\ &=\int_{F}\left( \partial_t\phi \right) \left( \partial_{n}\mathbf{G} \partial_t\psi\right) ^{*}\,\mathrm{d} x \\ &=\int_{F}\left( \zeta \right) \left( \partial_{n}\mathbf{G}\eta\right) ^{*}\,\mathrm{d} x, \end{matrix} }[/math]

where [math]\displaystyle{ \phi }[/math] and [math]\displaystyle{ \psi }[/math] are the surface potentials associated with [math]\displaystyle{ \zeta }[/math] and [math]\displaystyle{ \eta }[/math] respectively.

Eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math]

The eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] satisfy

[math]\displaystyle{ \partial_{n}\mathbf{G} \zeta = \omega^2 \zeta. }[/math]

To solve for the eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] we need to solve the frequency-domain equations, and the radian frequency [math]\displaystyle{ \omega }[/math] is exactly the eigenvalue. To actually calculate the eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] we need to specify the incident wave potential, and for each frequency we have two eigenfunctions (waves incident from the left and from the right). It is possible for there to exist point spectra for this operator which correspond to the existence of a trapped mode McIver 1996 and the presence of a trapped mode requires that the generalized eigenfunction expansion we derive must be modified.

Normalization of the Eigenfunctions

The eigenfunctions of [math]\displaystyle{ \partial_{n}\mathbf{G} }[/math] (with eigenvalue [math]\displaystyle{ \omega }[/math]) are denoted by [math]\displaystyle{ \zeta_{\kappa}(x,k\left( \omega\right) ) }[/math], where [math]\displaystyle{ \kappa = \pm 1 }[/math] for waves incident from the left or right respectively. We must also specify radiations conditions to normalize the eigenfunctions and they are given by

[math]\displaystyle{ {\zeta}_1 = \left( \mathrm{e}^{\mathrm{i} kx} + R_1 e^{- \mathrm{i} k x} \right)\frac{\cos k_0\left( z+h\right) }{\cos k_0h}, \,\,\,\mathrm{as}\,\,x\to-\infty, }[/math]
[math]\displaystyle{ {\zeta}_1= T_1\mathrm{e}^{\mathrm{i} k x}\frac{\cos k_0\left( z+h\right) }{\cos k_0h}, \,\,\,\mathrm{as}\,\,x\to\infty, }[/math]
[math]\displaystyle{ {\zeta}_{-1} = T_{-1}\mathrm{e}^{-\mathrm{i} k x} \frac{\cos k_0\left( z+h\right) }{\cos k_0h}, \,\,\,\mathrm{as}\,\,x\to\infty, }[/math]
[math]\displaystyle{ {\zeta}_{-1}= \left( \mathrm{e}^{-\mathrm{i} k x} + R_{-1} e^{\mathrm{i} k x} \right)\frac{\cos k_0\left( z+h\right) }{\cos k_0 h}, \,\,\,\mathrm{as}\,\,x\to-\infty. }[/math]

Note that [math]\displaystyle{ R_{\kappa} }[/math] and [math]\displaystyle{ T_{\kappa} }[/math] are the reflection and transmission coefficients respectively and that we have normalized so that the amplitude (in displacement) is unity. Also [math]\displaystyle{ k = - \mathrm{i} k_0 }[/math].


and we will consider both [math]\displaystyle{ k(\omega) }[/math] and [math]\displaystyle{ \omega(k) }[/math] in what follows as required. The solution of the single-frequency equation may be computationally challenging and for the generalized eigenfunction expansion the major numerical work is to determine the single-frequency solutions. As mentioned previously, determining [math]\displaystyle{ \zeta_\kappa }[/math] is the major computation of the generalized eigenfunction method, but we simply assume that they are known. We know that the eigenfunctions are orthogonal for different [math]\displaystyle{ \omega }[/math] (from the self-adjointness of [math]\displaystyle{ \partial_n\mathbf{G} }[/math]), and that the waves incident from the left and right with the same [math]\displaystyle{ \omega }[/math] are orthogonal from the identity

[math]\displaystyle{ R_1 T_{-1}^{*} + R_{-1}^{*} T_{1}=0, }[/math]

Mei 1983. It therefore follows that

[math]\displaystyle{ \left\langle \left( {\zeta}_{\kappa}(x,k\left( \omega_{1}\right) )\right) ,{\zeta}_{\kappa^{\prime}}(x,k\left( \omega_{2}\right) )\right\rangle _{\mathcal{H} }=\Lambda_{n}\left( \omega_{1}\right) \delta\left( \omega_{1}-\omega _{2}\right) \delta_{\kappa\kappa^{\prime}}, }[/math]

but we need to determine the normalizing function [math]\displaystyle{ \Lambda_{n}\left( \omega_{n}\right) }[/math]. This is achieved by using the result that the eigenfunctions satisfy the same normalizing condition with and without the scatterers present. This result, the proof of which is quite technical, is well-known and has been shown for many different situations. The original proof was for Schr\"odinger's equation and was due to Povzner 1953 and Ikebe 1960. A proof for the case of Helmholtz equation was given by Wilcox 1975. Recently the proof was given for water waves by Hazard and Lenoir 2002 and Hazard and Loret 2007.

Since the eigenfunctions satisfy the same normalizing condition with and without the scatterers, we normalize with the scatterers absent. This means that the eigenfunctions are simply the incident waves, and the free surface [math]\displaystyle{ F }[/math] is the entire axis. This allows us to derive

[math]\displaystyle{ \begin{matrix} \left\langle \left( {\zeta}_{\kappa}(x,k\left( \omega_{1}\right) )\right) ,{\zeta}_{\kappa^{\prime}}(x,k\left( \omega_{2}\right) )\right\rangle _{\mathcal{H}} &= \int_{\mathbb{R}}\left( e^{\kappa\mathrm{i} k_{1} x}\right) \left( e^{\kappa^{\prime}\mathrm{i} k_{2}x}\right) ^{*}\,\mathrm{d} x \\ & =2\pi \delta_{\kappa\kappa^{\prime}}\delta\left( k_{1}-k_{2}\right) \\ & =2\pi\delta_{\kappa\kappa^{\prime}}\delta\left( \omega_{1}-\omega_{2}\right) \left. \frac{\mathrm{d}\omega}{\mathrm{d}k}\right\vert _{\omega=\omega_{1}}. \end{matrix} }[/math]

This result allows us to calculate the time-dependent solution in the eigenfunctions (or single-frequency solutions).

Expansion in Eigenfunctions

We expand the solution for the displacement in the time domain as

[math]\displaystyle{ \zeta\left( x,t\right) =\int_{\mathbb{R}^{+}} \sum_{\kappa\in\left\{ -1,1\right\}} \left\{ f_{\kappa}\left( \omega\right) \cos(\omega t)+ g_{\kappa}\left( \omega\right) \frac{\sin(\omega t)}{\omega}\right\} \zeta_{\kappa}(x,k) \mathrm{d}\omega, }[/math]

where [math]\displaystyle{ f_\kappa }[/math] and [math]\displaystyle{ g_\kappa }[/math] will be determined from the initial conditions. Note that here, and in subsequent equations, we are assuming that [math]\displaystyle{ k }[/math] is a function of [math]\displaystyle{ \omega }[/math] or that [math]\displaystyle{ \omega }[/math] is a function of [math]\displaystyle{ k }[/math] as required. If we take the inner product with respect to the eigenfunctions [math]\displaystyle{ \zeta_\kappa }[/math] we obtain

[math]\displaystyle{ \left\langle \zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi f_{\kappa}\left( \omega\right) \frac{\mathrm{d}\omega}{\mathrm{d}k}, }[/math]

and

[math]\displaystyle{ \left\langle \partial_t\zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}}=2\pi g_{\kappa}\left( \omega\right) \frac{\mathrm{d}\omega}{\mathrm{d}k}. }[/math]

We can therefore write, changing the variable of integration to [math]\displaystyle{ k }[/math], as

[math]\displaystyle{ \zeta\left( x,t\right) =\frac{1}{2\pi}\int_{\mathbb{R}^{+}} \sum_{\kappa\in\left\{ -1,1\right\}} \Big\{ \left\langle \zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}} \cos(\omega t) + \left\langle \partial_t \zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}} \frac{\sin(\omega t)}{\omega}\Big\} \zeta_{\kappa}(x,k) \mathrm{d}k, }[/math]

If we take the case when [math]\displaystyle{ \partial_t\zeta_0( x) =0 }[/math] and write the integral given by the inner product explicitly, we obtain

[math]\displaystyle{ \zeta\left( x,t\right) =\int_{\mathbb{R}^{+}}\Big\{ \sum_{\kappa\in\left\{ -1,1\right\} }\left( \frac{1}{2\pi}\int_{F}\zeta_0\left( x^{\prime}\right) \zeta_{\kappa}(x^{\prime},k) ^{*}\,\mathrm{d} x^{\prime}\right) \zeta_{\kappa}(x,k)\Big\}\cos(\omega t)\mathrm{d}k. }[/math]

Case of a trapped mode

If the scattering structure supports a trapped mode at a particular frequency [math]\displaystyle{ \omega_{0} }[/math] then the expression for the free-surface elevation becomes

[math]\displaystyle{ \zeta\left( x,t\right) =\int_{\mathbb{R}^{+}}\Big\{ \sum_{\kappa\in\left\{ -1,1\right\} }\left( \frac{1}{2\pi}\int_{F}\zeta_0\left( x^{\prime}\right) \zeta_{\kappa}(x^{\prime},k) ^{*}\,\mathrm{d} x^{\prime}\right) \zeta_{\kappa}(x,k)\Big\}\cos(\omega t)\mathrm{d}k + \left(\frac{\int_{F}\zeta_{0}(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} } {\int_{F}\tilde\zeta(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }\right)\tilde\zeta(x)\cos(\omega_{0} t) }[/math]
[math]\displaystyle{ + \int_{\mathbb{R}^{+}}\Big\{ \sum_{\kappa\in\left\{ -1,1\right\} }\left( \frac{1}{2\pi}\int_{F}\partial_t\zeta_0\left( x^{\prime}\right) \zeta_{\kappa}(x^{\prime},k) ^{*}\,\mathrm{d} x^{\prime}\right) \zeta_{\kappa}(x,k)\Big\}\frac{\sin(\omega t)}{\omega} \mathrm{d}k + \left(\frac{\int_{F} \partial_t\zeta_{0}(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }{\int_{F} \tilde\zeta(x^{\prime})\tilde\zeta(x^{\prime})^{*}\mathrm{d}x^{\prime} }\right)\tilde\zeta(x)\frac{\sin(\omega_{0} t)}{\omega_0} }[/math]

where [math]\displaystyle{ \tilde\zeta(x) }[/math] is the trapped mode free-surface elevation. This formula can be extend to the case when there is more than one trapped mode.

An identity linking waves from the left and right

A consequence of the requirement that the displacement be real, if the initial displacement and initial derivative of displacement is real, is that

[math]\displaystyle{ \sum_{\kappa\in\left\{ -1,1\right\}} \left\langle \zeta_0\left( x\right) ,\zeta_{\kappa}(x,k)\right\rangle _{\mathcal{H}} \zeta_{\kappa}(x,k), }[/math]

must be purely real. This can only be true if

[math]\displaystyle{ \Im \left\{ \zeta_{1}(x^\prime,k)^{*} \zeta_{1}(x,k) \right\} = - \Im \left\{ \zeta_{-1}(x^\prime,k)^{*} \zeta_{-1}(x,k) \right\}, \,\,\,x,x^{\prime} \in F. }[/math]

Matlab Code

with output shown on the right

The evolution of an initial surface displacement, with two docks as shown

Additional code

This program requires