Difference between revisions of "Graf's Addition Theorem"

From WikiWaves
Jump to navigationJump to search
Line 11: Line 11:
 
where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions]
 
where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions]
 
<math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>.  
 
<math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>.  
which is valid provided that <math>r_l < R_{jl}</math> (this restriction is not necessary if <math>C=J</math> and <math>\nu</math> is an integer.  
+
This expression is valid only provided that <math>r_l < R_{jl}</math> (
 +
with the exception that this restriction is not necessary if <math>C=J</math> and <math>\nu</math> is an integer).  
 
Here, <math>(R_{jl},\varphi_{jl})</math>  are the polar coordinates of the mean centre position of <math>\Delta_{l}</math> in the local coordinates of <math>\Delta_{j}</math>.  
 
Here, <math>(R_{jl},\varphi_{jl})</math>  are the polar coordinates of the mean centre position of <math>\Delta_{l}</math> in the local coordinates of <math>\Delta_{j}</math>.  
  

Revision as of 14:59, 28 March 2007

Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found Abramowitz and Stegun 1964 online. We express the theorem in the following form

[math]\displaystyle{ C_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} C_{\nu + \mu} (\eta R_{jl}) \, J_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]

where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ J_\nu }[/math], [math]\displaystyle{ I_\nu }[/math], [math]\displaystyle{ Y_\nu }[/math], [math]\displaystyle{ K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math]. This expression is valid only provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math] ( with the exception that this restriction is not necessary if [math]\displaystyle{ C=J }[/math] and [math]\displaystyle{ \nu }[/math] is an integer). Here, [math]\displaystyle{ (R_{jl},\varphi_{jl}) }[/math] are the polar coordinates of the mean centre position of [math]\displaystyle{ \Delta_{l} }[/math] in the local coordinates of [math]\displaystyle{ \Delta_{j} }[/math].

Explicit versions of the theorem are given below,

[math]\displaystyle{ H_\nu^{(1)}(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\eta R_{jl}) \, J_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]
[math]\displaystyle{ K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]

This theorem form the basis for Kagemoto and Yue Interaction Theory.